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1.1 Sensitive periods: windows of opportunity during development?

Sensitive periods are times (or life stages) in which an organism’s phenotypic 
development is more affected by experience than at other times (or stages). They exist 
across the entire tree of life and play a crucial role in development (Bradshaw, 1965; DeWitt 
& Scheiner, 2004; Nijhout, 2015; Schlichting et al., 1998). Sensitive periods result from 
developmental plasticity, i.e., the capacity of a genotype to produce different phenotypes 
depending on experience (Nettle & Bateson, 2015; Stearns, 1989). Invertebrates, for 
instance, may develop armored defensive morphologies in the presence of predators (e.g., 
water fleas develop protective helmets in predator-dense environments), but not when few 
predators are present (Agrawal et al., 1999). In humans, early life adversity and stress are 
known to have long lasting and often adverse effects on the development of children (Belsky 
& Pluess, 2009; Ellis & Boyce, 2008; Lin et al., 2020). Research on sensitive periods tends 
to assume that plasticity is costly, for example, due to costs of building and maintaining the 
required neural-cognitive machinery (DeWitt et al., 1998). These costs may result in periods 
of enhanced plasticity as opposed to lifelong plasticity. Without costs, all organisms should 
be “Darwinian demons,” which always perfectly tailor their phenotypes to local conditions 
to increase survival and reproductive success (i.e. fitness) (Law, 1979). Such organisms do 
not exist, even if some species exhibit lifelong plasticity in certain traits. 

Rather certain characteristics, such as the onset, timing and duration of sensitive 
periods, are not fixed (Bornstein, 1989; Fawcett & Frankenhuis, 2015). Instead, they vary 
between species, between individuals within a species, and between traits within a single 
individual. For example, zebra finches learn songs only early in life, while European starlings 
are life-long learners (Kelly et al., 2018; Mountjoy & Lemon, 1995). Zooming in on a species, 
we see individual differences. For example, human adolescents vary in the extent to which 
exposure to environmental unpredictability affects their rate of maturation (Belsky & Pluess, 
2009; Del Giudice et al., 2011). A close-up of a single individual reveals variation between 
different traits, for instance, in the plasticity of cognitive versus emotional systems following 
adoption (e.g., from a harsh orphanage into a supportive family) (Tottenham et al., 2010; 
Zeanah et al., 2011). What explains this variability in sensitive periods between species, 
individuals, and traits? 

1.2 Lessons learned from empirical work

We have learned much about the biological and neurophysiological mechanisms 
underlying variation in sensitive periods (Creanza et al., 2016; Knudsen, 2004). For decades 
the predominant view held among researchers was that the course of our development is set 
early in life. While early life is still considered as a sensitive period for many developmental 
traits, research has also identified sensitive periods during later developmental stages. 
Across different traits and species adolescence has emerged as such a ‘later’ sensitive 
period. For example, in some mammalian species experiences during adolescence shape 
adult social behavior to a larger extent than childhood experiences (Buwalda et al., 2011; 
Mutwill et al., 2020; Sachser et al., 2020). In humans, adolescence functions as a sensitive 
period for various neural and cognitive traits, such as the ability to cope with social stress, 
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memory formation, and developing learning strategies (Blakemore & Mills, 2014; Dahl, 
2004; Fuhrmann et al., 2015; Knoll et al., 2016; Raab & Hartley, 2019).

Understanding when during development plasticity is enhanced is only the first step. 
The next step is to capitalize on this understanding to manipulate when and how individuals 
are shaped by experiences. An extreme case of such manipulation would be to reopen 
sensitive periods for specific experiences during development. Hypothetically, this could 
allow adults to learn languages with the same ease as children. While this is not possible 
to date, neuroscientists have developed experimental interventions to reopen sensitive 
periods for some traits and species (e.g., visual development in rats) (Hensch & Bilimoria, 
2012; Reh et al., 2020). Such interventions range from invasive biochemical and surgical 
interventions, over less invasive electrical stimulation, to non-invasive environmental 
changes. The ability to manipulate the onset, timing, and duration of sensitive periods in 
this way has vast implications for developmental research. Research on sensitive periods 
outlines the possibility to reverse the effects of psychological and physiological trauma in 
human and non-human animals.   

1.3 The evolution of sensitive periods

Despite progress in understanding the physiological mechanisms of sensitive periods, 
we know little about their evolution. Under what environmental conditions should we expect 
sensitive periods to evolve early in life as opposed to later during ontogeny (i.e., the stage 
that is relevant for an organism’s development)? Or, more generally, how do environmental 
conditions shape levels of plasticity across an organism’s development? 

Historically, evolution and development have often been viewed as opposing forces in 
a zero-sum relationship (Frankenhuis & Fraley, 2017). Nowadays, we acknowledge that these 
processes are nested, albeit operating on different time scales (S. P. Wilson & Prescott, 2022). 
Organisms adapt to ecologies across generations through natural selection (evolutionary 
timescale) and within their individual lifetimes through development and learning 
(developmental timescale) (Frankenhuis & Fraley, 2017; Frankenhuis & Walasek, 2020). 
Natural selection shapes the developmental and learning systems, which tailor individuals 
to local conditions based on experience. In subsequent generations natural selection acts on 
the resulting variation in phenotypes (Frankenhuis et al., 2013). Considering evolution and 
development together can provide valuable insights into the study of sensitive periods. It 
can help us understand how environmental conditions across evolutionary timescales result 
in developmental systems that produce sensitive periods within developmental timescales. 

Such insights may help us understand why some environmental changes, such as 
enrichment (i.e., increasing variation in environmental stimuli), can reverse abnormal visual 
development in rats (Hensch & Bilimoria, 2012). For example, recent modelling has identified 
conditions that may favor the evolution of enhanced plasticity at later developmental 
stages. Natural selection may favor such a pattern of plasticity, when experiences later 
during development are more informative about environmental conditions than early 
experiences (Walasek et al., 2021). In that sense, an enriched environment may provide 
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better information about the state of the environment. Enhanced plasticity might be a 
physiological reaction to process this ‘valuable’ information. Evolutionary insights can also 
help us identify other environmental conditions (e.g., changes in the environmental state), 
unrelated to enrichment, that select for enhanced plasticity and are thus ‘candidates’ for 
reopening sensitive periods. Subsequent empirical work could then design experimental 
studies (e.g., in rats) to test whether these conditions actually reopen sensitive periods. 

1.4 Modelling as a tool to study evolution and development

Models lie on a continuum. They can range from highly specific models that make 
quantitative predictions to abstract models of processes that generate qualitative patterns 
(Servedio et al., 2014). Here, I am focusing on mathematical and computational models 
that are used to study evolutionary and developmental processes. Such models can provide 
insight into species-typical development and individual differences within species (Fawcett 
& Frankenhuis, 2015; Frankenhuis & Fraley, 2017; Frankenhuis & Walasek, 2020). Modelling 
allows us to test existing theories and to generate new predictions and theories to fuel future 
empirical work (Otto & Rosales, 2020; Servedio et al., 2014). By design, these models do not 
include all possible variables. Rather, they are simplified versions of reality that capture only 
some essential components of a process or system (Frankenhuis et al., 2013; Frankenhuis 
& Tiokhin, 2018; Houston et al., 1988; Levins, 1966; Reimer et al., 2019; Smaldino, 2017). 
Each model makes particular assumptions that may be criticized. The models developed as 
part of this dissertation, for instance, assume that organisms can develop phenotypes that 
perfectly match their environment. This phenotypic gambit allows researchers to ignore 
matters of genetic and physiological realization (Fawcett et al., 2013; Frankenhuis et al., 
2013; Frankenhuis & Tiokhin, 2018). If observations contradict model predictions, we need 
to refine our model. Statistician George Box famously remarked that all models are wrong 
but some are useful (Box, 1976). Simple models are useful because they make assumptions 
clear and explicit, remove ambiguities from natural language, and ensure logical consistency 
in argumentation (Borsboom et al., 2021; Frankenhuis & Tiokhin, 2018; Smaldino, 2017). 

1.5 Lessons learned from modelling

A growing body of theoretical work studies the conditions in which plasticity is 
favored by natural selection over non-plastic developmental strategies. From this work we 
have learned that plasticity depends, among other things, on the stability of environmental 
conditions. Environmental conditions that are stable across and within generations select 
for fixed, non-plastic developmental strategies. Plasticity can be adaptive in environments 
that vary across and within generations (DeWitt & Scheiner, 2004; Schlichting et al., 1998). 
If, relative to the species’ lifespan, conditions fluctuate rapidly between generations, but 
slowly within lifetimes, natural selection might favor plasticity (Botero et al., 2015; Snell-
Rood & Steck, 2019; Stephens, 1991). If, however, the environment fluctuates rapidly within 
generations, it may be too costly for organisms to continuously adjust their phenotypes 
based on experience, favoring non-plastic strategies (Leung et al., 2020; Pfab et al., 2016). 
Alternatively, plasticity may be prolonged if the costs of being mismatched to the environment 
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outweigh costs of being plastic (English et al., 2016; Panchanathan & Frankenhuis, 2016; 
Pascalis et al., 2020).

In recent years, there has also been a surge in models used to explore when during 
development enhanced plasticity should be favored. These models do not start out assuming 
sensitive periods. Rather, sensitive periods might be favored by natural selection in response 
to the environmental conditions explored. Existing models found that patterns of sensitive 
periods depend on uncertainty about environmental conditions. Plasticity tends to be higher 
early in life when an organism’s uncertainty about her environment at birth is higher and 
the better experiences (‘cues’) during development help to reduce this uncertainty (English 
et al., 2016; Fischer et al., 2014; Frankenhuis & Panchanathan, 2011b; Panchanathan & 
Frankenhuis, 2016; Stamps & Krishnan, 2014a, 2014b, 2017). The extent to which cues 
reflect environmental conditions is called the ‘cue reliability’. The cue reliability determines 
the cue’s scope to reduce an organism’s uncertainty. The higher the cue reliability, the more 
likely it is that plasticity ‘closes’ before the end of development, resulting in zero plasticity at 
the end of ontogeny. Such periods of heightened plasticity are called ‘critical’ periods. When 
cues are noisy and do not help to reduce uncertainty, plasticity declines more slowly across 
ontogeny (Frankenhuis et al., 2016). These patterns resonate with empirical findings. For 
example, studies in humans, birds, and rodents have shown that noisy inconsistent inputs 
tend to prolong sensitive periods (Chen et al., 2020; Freund et al., 2013; Tooley et al., 2021). 

Insights gained from theoretical work has enriched empirical approaches to studying 
sensitive periods. For example, models by Frankenhuis and Panchanathan predicted that 
individual differences in phenotypes become more stable across development (Frankenhuis 
& Panchanathan, 2011a, 2011b; Panchanathan & Frankenhuis, 2016). This inspired studies 
of fish, which support this prediction (Bierbach et al., 2017; Kok et al., 2019). In addition 
to generating new predictions, such models can also be used to provide explanations of 
existing empirical findings about the development of sensitive periods. For example, the 
well-known observation that in most traits plasticity tends to decline over the lifespan is 
consistent with the results of current models (Frankenhuis & Fraley, 2017).

1.6 Limitations of existing models

As noted earlier, sensitive periods do not only occur early in life and sometimes 
may even be prolonged until the end of development. Existing models of sensitive 
period evolution offer little insight into conditions favoring enhanced plasticity at later 
developmental stages. However, researchers have speculated that natural selection might 
favor sensitive periods later during development when organisms experience variation in 
two main factors: the extent to which cues can reduce uncertainty about the environment 
(‘cue reliability’) and the environmental state itself (Fawcett & Frankenhuis, 2015). All but 
one of the existing models assume that the reliability of cues and the environmental state 
are constant within the lifetime of an organism. However, the reliability of cues may change 
across development when organisms’ sensory systems mature, when the frequency of cues 
changes across development, or when the availability of some cues is restricted to specific 
developmental stages. For example, prenatal cues provide estimates about nutritional 
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conditions expected outside the womb (Kuzawa, 2005). Information through this channel 
is not available to the newborn and thus exclusive to the fetal stage. Also, most long-lived 
species do experience changes in environmental conditions within their lifetimes. For 
example, organisms experience environmental changes when they migrate across different 
habitats or due to variation in weather, season, and climate. 

To our knowledge, there exists only one model of sensitive period evolution which 
assumes that the environmental state itself fluctuates within an organism’s lifetime (Fischer 
et al., 2014). However, this model assumes unbounded phenotypic development, such 
that organisms can develop any phenotype at any age. This assumption does not apply 
to traits that develop incrementally, i.e., one step at a time, or irreversibly. Incremental 
and irreversible development constrains the range of phenotypes available at different 
developmental stages. As the end of development approaches, the organism has less time 
left to make phenotypic adjustments, limiting the range of realizable phenotypes.

Incremental and irreversible development is widespread in nature. For instance, 
plants gradually adjust the shape of leaves (e.g. area, thickness, and dissection) in response 
to environmental conditions, such as light intensity, humidity, and temperature (Callahan 
et al., 1997; Maugarny-Calès & Laufs, 2018; Schlichting, 1986). Animals, incrementally and 
often irreversibly, develop morphological defenses, such as protective armor, or increased 
body size in response to predator cues (Agrawal et al., 1999). In humans, the development of 
motor skills, such as sitting, standing, climbing, and walking, appears stepwise if measures are 
taken across weeks or months. However, this pattern reflects smaller incremental changes, 
which are visible once measures are taken frequently on shorter time scales (Adolph et 
al., 2008). Despite the ubiquity of incremental and irreversible development, only a few 
models have explored their consequences for the evolution and development of sensitive 
periods (Frankenhuis & Panchanathan, 2011b; Panchanathan & Frankenhuis, 2016). No 
models have simultaneously explored varying cue reliabilities or fluctuating environments. 
My dissertation fills this gap.  

1.7 Bridging theoretical and empirical studies of sensitive periods

In recent years the value of modeling is increasingly being recognized across different 
disciplines (Borsboom et al., 2021; Frankenhuis & Tiokhin, 2018; Fried, 2020; Grainger et 
al., 2021; Guest & Martin, 2021; Muthukrishna & Henrich, 2019; Smaldino, 2017, 2020; 
van Rooij & Baggio, 2021). However, the links between theory and data are still relatively 
weak and there exists resistance among empiricists to engage more with theoretical work. 
This reduces the scope for synergies between theoretical and empirical studies. One reason 
for resistance towards incorporating existing theoretical work, is that some theoretical 
papers use technical language and jargon, that is not accessible for an empirical audience 
(Martínez & Mammola, 2021). One reason for resistance towards engaging in hands-on 
theory development is that modeling can seem intimidating because it usually requires 
computational and mathematical skills that social scientists are rarely trained in (Borsboom 
et al., 2021; Grainger et al., 2021; Smaldino, 2020). In other cases, empiricists might discard 
models altogether as too simplistic to be valuable for the problems they study. Many 
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researchers have engaged with this argument, emphasizing the value of simple models for 
research (e.g., Frankenhuis & Tiokhin, 2018; Smaldino, 2017). Still, there exist various ways 
in which modelers can do more to better integrate their work with empirical studies. 

One way to achieve better integration is to develop models that are tailored towards 
specific phenomena and incorporate known mechanisms of those phenomena. For example, 
empirical research on sensitive periods distinguishes between experience-expectant and 
experience-dependent plasticity. This distinction is rarely adopted by evolutionary biologists 
(Frankenhuis & Nettle, 2020). Experience-expectant plasticity uses neural mechanisms 
prepared to process information that is available to all members of a species around the 
same developmental stage (Frankenhuis & Nettle, 2020; Gabard-Durnam & McLaughlin, 
2019; Gabard-durnam & Mclaughlin, 2020; Greenough et al., 1987). Visual and auditory 
development, for example, are shaped by experience-expectant plasticity. Experience-
dependent mechanisms process information that is unique to an individual, potentially 
resulting in brain changes in response to those experiences. However, not all traits neatly fall 
into either of these two categories (Frankenhuis & Walasek, 2020). An evolutionary model 
that incorporates these known mechanisms could help answer under what conditions 
we expect natural selection to favor traits that are experience-expectant, experience-
dependent, or both. 

Similarly, models could incorporate experimental features of empirical studies. For 
example, plasticity is quantified in various ways across empirical studies. Plasticity in humans 
is often quantified by comparing individuals who have been adopted (or have migrated) at 
different ages with each other (Mascie-Taylor & Little, 2004; Pallier, 2003; Zeanah et al., 
2011). Plasticity in non-human animals (e.g., rodents, birds) allows for a greater degree 
of experimental control. These studies often use paradigms, such as cross-fostering, in 
which animals are transferred at different ages between different caregivers or patches 
(Breed & Moore, 2015), or dose-dependent experience paradigms that systematically vary 
the duration and intensity of exposure to particular stimuli (Groothuis & Taborsky, 2015). 
Some existing models of sensitive period evolution use paradigms, like adoption or dose-
dependent experience studies, to achieve a closer correspondence between their models 
and empirical studies (Panchanathan & Frankenhuis, 2016; Stamps & Krishnan, 2014a, 
2014b, 2017). 

A different approach to forming stronger connection between models and data 
does not involve changing aspects of the model but the input to the model. Consider a 
model of sensitive periods which assumes that the environment fluctuates within an 
organism’s lifetime (e.g., Fischer et al., 2014). Rather than exploring all possible rates of 
environmental fluctuations, such a model could focus on those rates that are known to 
be relevant for a specific species or trait. In this way, the results of the model would be 
more relevant to researchers studying these species or traits. For example, higher rates of 
environmental fluctuations may make it more challenging for organisms to predict their 
environment. Current levels of environmental unpredictability have been linked to how 
populations respond to novel environmental conditions (Bitter et al., 2021). Drawing on 
evolutionary theory, Bitter et al. (2021) have identified the extent to which animals can 
predict environmental fluctuations as a potential driver of phenotypic variation in novel 



1

Introduction   |   19   

environments. Such variation may be key in ensuring survival in the face of climate change. 
Knowing the values of unpredictability statistics for different species can thus help to predict 
their response to novel conditions, such as those caused by climate change. 

Although statistical properties of the environment are commonly measured in 
non-human animals and plants (Burgess & Marshall, 2011; Vasseur & Yodzis, 2004), we 
currently know little about the statistics of environments relevant for human development 
(Frankenhuis, Nettle, et al., 2019). Ideally, there would exist a database of environmental 
statistics relevant to human development. Such a database would contain the values of 
different statistics for different environmental variables (e.g., rate of environmental 
fluctuations), different timescales (e.g., years, months), and for diverse populations. 
Empiricists can use the database to identify environments that show specific characteristics 
(e.g., highly unpredictable) to test existing hypotheses or explore new ones. Modelers 
can use it to set model parameters based on their corresponding empirical values (e.g., 
autocorrelations above 0.8). In this way a database of environmental statistics could increase 
synergies between empirical, developmental research and models of developmental 
processes. 

1.8 Current objectives

This dissertation has two goals. The first is to provide a deeper understanding of the 
evolution and development of sensitive periods. Specifically, my models provide insights into 
conditions that favor sensitive periods halfway through ontogeny, as well as residual plasticity 
at the end of ontogeny. These models contribute to an integrative theoretical framework of 
the evolution and development of sensitive periods. They thus enrich existing theory of the 
evolution of phenotypic plasticity. The second goal is to increase synergies between models 
like mine and empirical work. To this end, my models incorporate a range of study paradigms 
for quantifying plasticity commonly used in empirical studies (e.g., adoption paradigms). 
In addition, I present a computational framework for studying environmental statistics in 
developmental science. My framework can facilitate the development of a database of 
environmental statistics, creating common ground for empiricists and theoreticians.   

1.9 Thesis outline

Goal 1: evolutionary models of incremental development 
First, I will present central tenets, insights, and predictions of existing models of 

sensitive periods, discuss how they relate to empirical work, and how future models 
may improve the bridge between theory and data (Chapter 2). Second, I will present two 
evolutionary models of incremental development that fill existing gaps in the literature. 
Both models extend previous work on sensitive period evolution by Panchanathan 
& Frankenhuis (2016). Their model explores the evolution of sensitive periods when 
development is incremental and irreversible. It also assumes that the cue reliability and the 
environmental state are constant within an organism’s lifetime. I relax these assumptions. 
The first model presented here introduces variation in the reliability of cues across an 
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organism’s lifespan and presents novel study paradigms to quantify plasticity (Chapter 3). 
The second model assumes a stable cue reliability but allows the environmental state to 
fluctuate across ontogeny (Chapter 4). This incremental approach to studying the evolution 
of sensitive periods has helped me to identify and understand the unique contributions of 
the environmental conditions explored.

Goal 2: a framework for studying environmental statistics in developmental science
At the core of developmental science is the interplay between individuals and 

their environments over time. All developmental research involves assumptions, claims, 
or questions about environmental stability and change. Statistical definitions serve as the 
building blocks we use to explore and test questions related to stability and change. Yet, 
we often overlook their importance, focusing instead on constructs and measurement 
instruments. As a result, statistical definitions are only loosely connected to the constructs 
they represent and are inconsistent across studies. This puts developmental studies in 
disarray. Focusing on stability and change, I present a computational framework that 
organizes environmental statistics across development (Chapter 5). The framework highlights 
different statistical definitions of stability and change and provides tools to realize them. 
Using environmental unpredictability as a case study, I apply the framework to a dataset 
of crime rates in New York City across 15 years. Computing environmental statistics in this 
way may be a start for developing a database of environmental statistics. Such a database 
could grow into a public platform that is shared across disciplines interested in how the 
environment shapes development. I conclude the dissertation with a general discussion of 
my findings and suggestions for future directions (Chapter 6).

1.10 Methods used in this dissertation

Both models presented here assume the following life-history of the organism: 
organisms are born, randomly disperse into a new patch (i.e., discrete area which they 
occupy), develop to maturity in the new patch, reproduce, and die. At birth organisms are 
uncertain about the state of their patch and only equipped with a prior estimate over the 
distribution of states. During each time period in ontogeny organisms sample a cost-free, 
imperfect cue to the environmental state of their patch to reduce uncertainty. Based on 
those cues organisms make phenotypic decisions. 

Stochastic dynamic programming 
I use stochastic dynamic programming (SDP) to compute optimal developmental 

trajectories. SDP is often used by behavioral ecologists to predict animal behavior in 
sequential, state-dependent decision problems (e.g., foraging) (Frankenhuis et al., 2013, 
2018; Frankenhuis, Panchanathan, et al., 2019; Houston et al., 1988; Reimer et al., 2019). 
Dynamic optimization aims to find the choice or action that maximizes expected fitness 
(e.g., reproductive success) for every possible state of the developing organism. In my 
models, an organism’s state consists of its current phenotype and cues sampled. The result 
of this optimization procedure is called an optimal policy. Stochastic dynamic programming 
is suitable for problems that involve uncertainty and interdependent decisions across time. 
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In the models presented here, organisms are uncertain about environmental conditions and 
current decisions affect future outcomes.

As is common in behavioral ecology, I use backward induction to solve the stochastic 
dynamic programming equations. Backwards induction determines all possible states an 
organism can be in at the end of development and computes fitness associated with each 
state. Working its way backwards in time, the algorithm then considers all possible states 
prior to the final state. For each penultimate state it then determines the decision that 
maximizes expected fitness in the final time period. The procedure is repeated until the 
first time period is reached. The outcome of this procedure is the optimal decision for each 
possible state an organism can be in across development.   

Bayesian inference
Natural selection is an optimizing process, and so it might favor information use 

consistent with Bayesian learning – the optimal way of information updating (McNamara 
et al., 2006; Stamps & Frankenhuis, 2016). Bayes’ theorem allows me to combine an innate 
prior estimate, such as the inherited estimate about being born into a dangerous world, with 
information received due to observing a cue (e.g., observing a street fight). Organisms then 
arrive at an updated estimate about the current environmental state. Observing a street 
fight, which is a more likely event in a dangerous than a safe environment, increases the 
organism’s ‘belief’ about the current environment being dangerous. Organisms act as if they 
have a belief. In reality, however, organisms are adapted to a probability distribution over 
possible environmental states. A conscious mental representation of this distribution is not 
implied. 

Simulating experimental adoption studies: quantifying plasticity 
After computing optimal policies, I simulate whole populations following the optimal 

policies and the resulting distributions of mature phenotypes. To quantify plasticity, I use 
an experimental twin study. The following basic setup is common to both models that I 
developed. I simulate identical individuals (clones) following the optimal policy, who are 
separated at a certain time period during ontogeny. From then on, one individual (the focal) 
is kept in its original patch while the other individual (the clone) is adopted to a mirror 
patch. The clone receives reciprocal, opposite cues from the focal individual until the end 
of ontogeny. Plasticity is quantified by comparing the phenotypic difference between pairs 
of clones at the end of ontogeny. Large phenotypic differences at the end of ontogeny 
indicate that clones have been shaped to a large extent by experience, implying a high level 
of plasticity. This procedure is repeated for 10,000 pairs of clones for every possible time 
period during ontogeny. 

Time series analysis 
The last study (Chapter 5) borrows methods from time series analysis to compute 

stability and change statistics from repeated measures data (see Jebb et al. (2015) for 
a beginner-friendly tutorial). Any time series can be decomposed into its individual 
components: trend, season, and random component. The trend describes how the level 
of a time series changes with time. Season refers to the presence of reoccurring patterns 
within a calendar year. The random component is what is left of the data after subtracting 
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the trend and seasonal patterns. The presence of a trend or changes in variance across 
time indicate that a participant’s time series is likely non-stationary; that is, its statistical 
properties change across time. 

1.11 Transparency

All chapters of this dissertation are based on articles that are either published in 
peer-reviewed journals or in preparation to being submitted to a journal. Chapters can be 
read independently from one another and in any order. In this dissertation, I focus on the 
development of theories and statistical definitions which is quite rare in a field as hyper-
empirical as psychology. I hope that my work resonates with calls for more formal theory 
(Borsboom et al., 2021; Fried, 2020; Muthukrishna & Henrich, 2019; Smaldino, 2017), and 
more refined psychological constructs (Flake & Fried, 2020; Young et al., 2020). Increased 
integration of theory paired with open science research practices like preregistration of 
empirical studies, as well as the transparency of code and data, will hopefully increase the 
replicability of psychological studies in the years to come. All code and data that is part of 
this dissertation is openly available on GitHub. I provide links in each respective chapter. 
Additionally, I provide supplementary materials containing formulas and their derivations 
for each model.
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2.0 Abstract

In the past decade, there has been monumental progress in our understanding of the 
neurobiological basis of sensitive periods. Little is known, however, about the evolution 
of sensitive periods. Recent studies have started to address this gap. Biologists have built 
mathematical models exploring the environmental conditions in which sensitive periods 
are likely to evolve. These models investigate how mechanisms of plasticity can respond 
optimally to experiences during an individual’s lifetime. This paper discusses the central 
tenets, insights, and predictions of these models, in relation to empirical work on humans 
and other animals. We also discuss which future models are needed to improve the bridge 
between theory and data, advancing their synergy. We hope this work will contribute to 
recently emerging connections between the fields of developmental neuroscience and 
evolutionary biology. 
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2.1 Introduction

Finding common ground
Sensitive periods are widely studied across the social and biological sciences. The 

term is used in different ways in different disciplines. In this paper, we define a ‘sensitive 
period’ as a time period (or life stage) in which experience shapes a trait to a larger extent 
than the same experience does in other time periods (Fawcett & Frankenhuis, 2015). This 
definition is intentionally broad: the effects of experience are not necessarily limited to a 
sensitive period, and phenotypes developed during a sensitive period might be modifiable 
by later experience. Further, the definition is agnostic about mechanism; it concerns only 
the impact of experience on phenotype, not the mechanisms that implement this relation. 
Such generality has pros and cons. Pros are: this definition can be applied across species 
(from plants, to animals without brains, to homo sapiens) and to diverse phenomena (e.g., 
early programming, plasticity declining with age, adolescence offering new opportunities 
for adaptation). Cons are: when a general definition is applied to any particular species, it 
ignores mechanisms known to implement sensitive periods in this particular species (e.g., 
experience-expectant and experience-dependent plasticity in humans; Gabard-Durnam & 
McLaughlin, 2019; Galván, 2010; Greenough et al., 1987; Johnson, 2005).

Developmental neuroscientists often study sensitive periods using the framework 
of experience-expectant and experience-dependent plasticity. The former is plasticity that 
integrates “environmental information that is ubiquitous in the environment and common 
to all species members” (Greenough et al., 1987, p. 539); it involves neural mechanisms 
that come prepared for incorporating specific information (e.g., invariants in perceptual 
input). The latter, in contrast, is plasticity that integrates “environmental information that 
is idiosyncratic, or unique to the individual” (idem); it involves active formation of new 
synaptic connections in response to specific situations, which differ between individuals. 
This distinction captures an impressive array of processes in a variety of species, and has 
enabled tremendous progress in our understanding of the neurobiological mechanisms of 
plasticity. Moreover, subsequent elaborations of the distinction – which incorporate more 
refined descriptions of, for instance, the effects of timing and dose of experience (Dunn et 
al., 2019; Gabard-Durnam & McLaughlin, 2019) – are even better able to accommodate 
heterogeneity in contemporary data. We fully acknowledge the merit of this framework. 
Yet, we also agree with the scholars who originally developed this framework that it paints 
“a much more straightforward picture (…) than probably exists” (p. 551). In particular, the 
framework has limitations when applied across the full tree of life. 

The framework does not capture all classes of plasticity particularly well. For 
instance, polyphenic traits are traits where multiple, discrete phenotypes emerge from a 
single genotype, depending on environmental conditions. In many reptiles, variations in 
nest temperature determine sex (whether an organism becomes male or female). In many 
insects, temperature, photoperiod, or nutrition determines the caste of an individual (e.g., 
a larvae can develop into a queen, worker, or soldier). In many crustaceans, exposure to 
chemicals released by predators induces the development of defensive armor (Gilbert, 
2003). Such polyphenisms respond to environmental information that is not common to 
all species members, nor unique to an individual. Rather, all members of a species have 
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evolved to ‘expect’ different states of the environment, and are ‘prepared’ to develop a 
range of different phenotypes, depending on environmental or somatic conditions. The 
same logic applies to developmental mechanisms that are evolutionarily prepared to 
produce continuous phenotypic variation (e.g., adaptive calibration of rate of maturation in 
response to nutritional condition).

Polyphenic traits have some characteristics of experience-expectant plasticity, 
some of experience-dependent plasticity, and some that fit neither class well. All species 
members ‘expect’ particular experiences and are ‘prepared’ to respond to them. However, 
these experiences differ between individuals, frequently in non-idiosyncratic ways (e.g., 
in each generation, a predictable proportion of the population is exposed to each type of 
experience). Moreover, in some cases, the impact of experience is restricted to a single time 
window; in others, there are several time windows. In some cases, these windows are well 
delineated; in others, their onset and offset are more gradual. In some cases, time windows 
are neatly ordered; in others, their ordering is more variable. In some species, the effects of 
experience are irreversible; in others, they can be reversed (e.g., some fish can switch sex 
multiple times, including sex-specific behavioral repertoires, depending on social hierarchy), 
albeit perhaps more easily in some life stages than others. In terms of mechanism, some of 
these responses depend on neural overproduction and pruning, but many do not (e.g., the 
development of armor in crustaceans).

Nature rarely comes only in two kinds. More often, it presents a smorgasbord. In 
such cases, dichotomous frameworks can be extremely powerful, but not necessarily for 
all purposes. Here, we need a broad definition that describes changes in plasticity across 
ontogeny in a wide range of species. In addition, this definition should exclude cases where 
plasticity does not change across ontogeny. As noted earlier that our definition also has 
limitations; it is agnostic about mechanism. When studying species that fit experience-
expectant and experience-dependent plasticity, researchers may prefer to use those terms.

Why do sensitive periods exist?
Why are organisms not Darwinian demons, capable of adjusting their phenotypes 

with equal ease to new conditions throughout their lifetimes (Law, 1979)? In reality there is 
variation in plasticity (i.e., the ability to tailor development based on experience) between 
different species, between individuals, and even between different brain systems within a 
single individual. For instance, some bird species are only able to learn new songs in their 
first weeks, while others retain this ability throughout their lives (Beecher & Brenowitz, 
2005). After being adopted, some children adjust better than others to the new conditions 
(Ellis et al., 2011). And, different brain systems within a person may adjust to new conditions 
at different rates (Zeanah et al., 2011). 

In the past decade, there has been formidable progress in our understanding of the 
mechanisms that determine changes in plasticity over the life course (Takesian & Hensch, 
2013). It is now possible to modify aspects of sensitive periods (such as their timing and 
duration) for a range of neurobiological systems in different species, through experiential or 
pharmacological manipulation. This research truly has applied potential. For instance, it can 
inform interventions that erase neural signatures of trauma (Hensch & Bilimoria, 2012). It 
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also raises important ethical questions; for instance, whether it is ever ethical to apply such 
techniques to humans, and if so at what age and on which grounds. Despite great progress 
in our understanding of how sensitive periods work, we know little about why sensitive 
periods exist. Specifically, we know little about the conditions that favor the evolution of 
sensitive periods, about which sensitive periods are adaptive and which ones are not; and if 
adaptive, what a sensitive period’s function is. There are plausible hypotheses about specific 
observations, but there is no unifying theory.

Fortunately, a unifying framework is starting to emerge in biology. In the past decade, 
a set of formal (i.e., mathematical) models has emerged exploring the evolution of sensitive 
periods. These models explore how mechanisms of plasticity can respond in fitness-
enhancing ways to experiences during an individual’s lifetime (see Section 2.2 ‘Evolutionary 
modeling of sensitive periods’); and, as a consequence, produce variation in plasticity 
between species, individuals, and systems within the brain. Biologists acknowledge that not 
all plastic responses, nor all variations in plasticity, are adaptive. Yet, they explore ‘optimal’ 
developmental responses in different conditions. The reason is epistemological: in order 
to know which variation is adaptive, we need theory predicting what animals ought to do 
‘if’ they are responding adaptively (Frankenhuis et al., 2013, 2018). If predictions match 
observations, we find some support for our model and gain new insight. If predictions and 
observations do not match, we should modify our model, for instance, by incorporating 
constraints on animals’ abilities to sample and use available information in their environment 
in an optimal way (Marcus, 2009; Todd & Gigerenzer, 2000).This optimality approach is 
already used widely in different subfields of biology (e.g., functional morphology, behavioral 
ecology) and in cognitive science as well (see Section 2.2, ‘The value of modeling’).

We do not discuss formal models in detail (see Fawcett & Frankenhuis, 2015; 
Frankenhuis & Fraley, 2017). Rather, we will describe their central tenets, insights they 
provide, their predictions, and a selective review of empirical research on humans and other 
animals. In addition, we discuss which future models are needed to improve the bridge 
between theory and data, advancing their synergy.

2.2 Evolutionary models of sensitive periods

The value of modeling
Formal models have several advantages over natural language. Natural language is 

often more ambiguous than mathematics, and inferences – for instance, from premises to 
predictions – based on human reasoning are more fallible (e.g., subject to confirmation 
bias) than a mathematical analysis. Almost 200 years ago, Darwin recognized the value of 
mathematics. He wrote in his autobiography: “I have deeply regretted that I did not proceed 
far enough at least to understand something of the great leading principles of mathematics; 
for men thus endowed seem to have an extra sense” (1828–1831). As with natural language 
theories, the utility of any particular model will depend on the validity of its assumptions 
(do these match the phenomenon of interest), the rigor of its analysis (exploring all of the 
relevant conditions), and the interpretation of results (drawing reasonable conclusions 
about the world).
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Models, like maps, focus our attention on some factors and processes, while leaving 
out others (Epstein, 2008; Smaldino, 2017). In cognitive neuroscience, models focus on 
neurocognitive processes and their outcomes (van den Bos & Eppinger, 2016). In evolutionary 
biology, models focus on evolutionary processes (e.g., natural selection, mutation) and their 
outcomes. Models in cognitive neuroscience are often fitted to data (such as decisions, 
reaction times, and brain activity) with the goal to better understand the processes 
generating these data. By contrast, evolutionary models often start with general axioms 
(e.g., natural selection favors adaptive mechanisms), make additional assumptions about a 
phenomenon (e.g., plastic mechanisms tailor phenotypes to local conditions), and explore 
which mechanisms are favored, depending on environmental conditions (Frankenhuis et al., 
2013; Frankenhuis, Panchanathan, et al., 2019). 

Cognitive neuroscientists use formal models to explore questions about causal 
mechanisms at a proximate level. Evolutionary biologists use models to explore questions 
about evolutionary selection pressures at an ultimate level. For instance: if environmental 
conditions fluctuate at a particular rate, should natural selection favor plasticity or not? If 
plasticity is favored, should its level be uniform or variable across ontogeny? If variable, 
should we expect the onset and offset of enhanced plasticity to be punctuated or gradual? 
Is there one peak or multiple ones? Although evolutionary models do not directly provide 
insight into neurobiological mechanisms, they do offer hypotheses about the factors and 
processes that influence levels of plasticity (see Section 2.3). However, prediction is not 
the only goal of models. Models also help to organize existing observations, for instance, 
by explaining the adaptive function (or lack thereof) of known mechanisms. Proximate 
and ultimate explanations are not in opposition to each other, but mutually compatible; 
they exist at different levels. A biologist who has achieved a complete understanding of the 
neurobiological mechanisms of plasticity in, say, a soapberry bug, might still wonder: ‘What 
evolutionary selection pressures have favored plasticity in this species?’

A study of soapberry bugs – a half-inch-long, seed-eating insect – illustrates how 
plasticity can evolve. In Oklahoma, harsh weather conditions (e.g., storms) randomly kill 
subsets of individuals, and so soapberry bugs are exposed to a variable sex ratio (the ratio 
of females to males). There, males have evolved the ability to adjust their levels of mate 
guarding. When there are many rivals, they guard their current mate. When there are few 
rivals, they search for new mates. In Florida, by contrast, the weather is not harsh and so 
the sex ratio is stable over time. There, males have not evolved plasticity in their level of 
mate guarding; that is, males in Florida always guard the same amount. If these males are 
artificially exposed to varying sex ratios in the lab, they do not adjust their levels of mate 
guarding (Carroll & Corneli, 1995). This study shows that plasticity is a target of natural 
selection. Although this study did not examine whether there are sensitive periods in the 
development of mate guarding, formal models could be developed that explore at what life 
stages soapberry bugs should sample the local sex ratio, for how long they should sample, 
and how observations of the local sex ratio should affect their behavior.

Evolutionary models thus help to explain, at an ultimate level, ‘why’ different 
mechanisms have evolved in different species and traits; but not, at a proximate level, 
‘how’ these mechanisms work. These models do, however, offer predictions about ‘how’ 
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animals should respond to experiences at a behavioral level. Such predictions offer insight 
into proximate-level, developmental processes, even when these predictions do not tell us 
‘how’ behavior is accomplished (e.g., prolong plasticity if experience is too noisy to infer 
the statistical structure of the environment). Until biologists and neuroscientists achieve a 
complete understanding of mechanisms, therefore, evolutionary models can do more than 
just explain variation between species and traits; they can also help to uncover the factors 
and processes that influence the onset, duration, and offset of plasticity across ontogeny.

Evolutionary modeling of sensitive periods
All phenotypes, even those shared among all members of a species, result from 

developmental processes. It follows that natural selection can only influence phenotypes 
by shaping developmental systems; that is, the array of causal factors and processes that 
construct phenotypes (Barrett, 2014; Frankenhuis et al., 2013). The modeler wants to 
understand what evolutionary pressures, across generations, result in mechanisms that 
produce sensitive periods, within generations, based on experience.

Evolutionary models of sensitive periods do not start out assuming a sensitive period. 
Rather, such a period might emerge as the outcome favored by natural selection; that is, 
the outcome that maximizes biological ‘fitness’. Psychologists often use the term fitness 
to denote individual survival and reproduction. Biologists, however, typically use the term 
to refer to the reproductive success of developmental systems (or mechanisms, strategies, 
genotypes). These systems generate distributions of phenotypes (individuals), which might 
pass on the developmental system by reproducing. Thus, offspring inherit developmental 
systems from their parents. The fitness of a developmental system, then, depends on the 
extent to which the individuals it generates produce more offspring than those produced 
by other systems. From this viewpoint, the adaptive value of a sensitive period depends not 
on whether any particular individual benefits from it. What matters, rather, is whether the 
system achieves high fitness relative to other systems, because it generates phenotypes that 
are more affected by experience at certain times of life than others (e.g., early in ontogeny). 
Section 2.4, ‘Bridging evolutionary modeling and empirical paradigms’ discusses different 
ways to quantify the impact of experience on phenotype. 

All developmental systems include both genotypic and environmental factors and 
processes. However, the roles of these components in the production of phenotypes differ 
between developmental systems (Barrett, 2014; Bjorklund & Ellis, 2014; Frankenhuis et al., 
2013; Gottlieb, 1991; Lickliter & Honeycutt, 2003; Tooby et al., 2003). Some systems use 
aspects of their environments that are shared among all species members (e.g., invariants 
in the visual environment used to construct perceptual abilities). Others use aspects of 
their environments that vary between species members (e.g., polyphenisms). Both types 
of systems are common in nature, and both may exhibit sensitive periods. However, all 
evolutionary models of sensitive periods (that we are aware of) have explored systems 
that are exposed to environmental variation between generations, within generations 
between individuals, or both. There is, therefore, clearly a need for models of the evolution 
of sensitive periods in neural systems that are adapted to environmental invariants. Here, 
we restrict our discussion to existing models. The question addressed by these models is 
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whether experience should differently affect development, depending on its timing, dose, 
the information it provides, and so on.

To be able to explore these kinds of effects, a model needs to include two or more 
time periods in which organisms are able to access ‘cues’ that can shape their phenotypes 
(Frankenhuis, Panchanathan, et al., 2019). A cue is an observation that provides information 
(i.e., reduces uncertainty), either about the environment (e.g., safe or dangerous) or about 
the organism itself (e.g., its somatic condition). Cues are often imperfect (e.g., there may be 
smoke but no fire). The reliability of a cue depends on the extent to which it discriminates 
between different states of the environment or states of the organism. A cue has high 
reliability if it is much more likely to occur in certain states of the world than others (e.g., 
violence is more likely to occur in poor than in rich neighborhoods). A cue has low reliability 
if it is almost equally likely to occur in different states of the world (e.g., seeing a person lock 
their house may be about equally likely in poor and rich neighborhoods). Many species use 
cues to infer their current conditions (e.g., the level of danger), and some species also use 
cues to predict their (likely) future conditions. As we discuss below, the reliability of cues 
might affect the optimal level of plasticity, because this optimal level might depend on the 
extent to which an organism ‘knows’ (has information about) what the current conditions 
are and how likely these conditions are to change or remain the same.

Evolutionary models usually conceptualize development as a sequential decision-
making process. These models often describe the ‘state’ of an organism, which determines 
the decisions it makes, in terms of two components: estimates of the environment (e.g., 
safe or dangerous) and phenotypic condition (e.g., nutritional reserves). The model then 
computes, for every possible state of an organism, which decision maximizes the fitness 
of its mechanisms. We distinguish between ‘mechanism’ (or strategies, genotypes) and 
‘organism’ here too because, as noted, decisions that are optimal for a mechanism might 
produce outcomes that are actually detrimental for a subset of individuals (Frankenhuis 
& Del Giudice, 2012). For instance, in winner-takes-all mating systems (e.g., the alpha has 
many more babies than other group members, as in elephant seals), it may be adaptive for 
developmental mechanisms to produce aggressive animals that vie for the top rank in the 
social hierarchy. Such mechanisms may have higher fitness than alternative mechanisms 
that produce less aggressive individuals. Fighting is stressful and some animals will die. Yet, 
fighters may be maximizing the fitness of the mechanisms that created them.

In cognitive modeling, a prior is the estimate of an individual at the beginning of a 
decision problem (e.g., whether or not to wait for a reward). This estimate usually has its 
source within the individual’s lifetime (Dunlap & Stephens, 2016). It is based on personal 
experience (e.g., past promises were broken) or learned socially (e.g., people say future 
rewards are unreliable). In evolutionary models, in contrast, the prior does not necessarily 
represent psychological knowledge. Rather, it is an adaptation of a developmental system 
to the distribution of environments experienced by a lineage over evolutionary time. For 
instance, if a species was consistently exposed to high levels of predation, it may embody 
this statistical regularity by building anti-predator defenses by default, unless it receives 
strong evidence (contradicting the prior) that the current environment is actually safe. In 
evolutionary models, organisms may inherit their priors from their distant ancestors (e.g., 
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via genes), from their immediate ancestors (e.g., via parental effects, epigenetic factors), or 
a combination of both (Dall et al., 2005, 2015; Mangel, 1990; McNamara et al., 2006; Pfab 
et al., 2016; Stamps & Frankenhuis, 2016; Stamps & Krishnan, 2014a, 2014b; Trimmer et al., 
2011; Uller et al., 2015). Organisms update their priors based on the cues they sample during 
their lifetimes – often in a Bayesian fashion, the optimal way of updating – while making 
decisions that affect their phenotypes. These decisions and their phenotypic consequences 
illuminate the evolution of sensitive periods.

2.3 Plasticity depends on information about the current environment

Evolutionary models of sensitive periods have produced a variety of insights. We do 
not provide an exhaustive discussion of these insights here. Rather, we focus on one insight 
that is particularly relevant to developmental cognitive neuroscience. Readers who wish to 
read more may consider the following resources (Fawcett & Frankenhuis, 2015; Frankenhuis 
& Fraley, 2017; Stamps & Krishnan, 2017). 

Plasticity often depends on the extent to which the prior and cue reliability, that an 
animal is adapted to, provide information (reduce uncertainty) about the current state of 
the environment. Animals that are adapted to more uncertainty about current or future 
conditions – for instance, because their lineage evolved in diverse environments, or because 
cues have low reliability – might benefit from having greater plasticity. In many cases, the 
amount of information an animal is adapted to increases over its lifetime, because the 
animal learns about its environment; as a consequence, its plasticity might decline. This 
finding emerges in many models, and within models across a broad range of parameter 
combinations. 

This finding fits with empirical research showing that sensitive periods in experience-
expectant plasticity might be prolonged if: (i) animals are deprived of cues (Hensch, 2004; 
Knudsen, 2004; Michel & Tyler, 2005); (ii) animals process noisy cues (Chang & Merzenich, 
2003); (iii) cues are gradually changing (Bateson & Martin, 1999; Bolhuis, 1991); or (iv) 
perceptual systems offer the brain unstable inputs, possibly because they are developing or 
are disrupted (Thomas & Johnson, 2008). For instance, in zebra finches, the absence of tutors 
extends the sensitive period for song learning (Kelly et al., 2018), with greater numbers of 
new neurons being added to the high vocal center (an avian brain region) (Wilbrecht, 2006). 
The lack of exposure to faces prevents perceptual narrowing in Japanese macaques (Sugita, 
2008). Exposing rat pups to a stream of white noise delays their auditory specialization 
(Chang & Merzenich, 2003). However, deprivation does not merely prolong sensitive 
periods. In humans, for instance, it can accelerate synaptic pruning and limit myelination, 
reducing cortical thickness and white matter integrity (McLaughlin et al., 2017); and related, 
in non-human primates, it can result in neural disuse and inefficient processing (Scott et al., 
2007). In general, the effects of adverse experience on the brain are complex and diverse, 
because they result from a multitude of processes (Gabard-Durnam & McLaughlin, 2019; 
Galván, 2010). We argue that one such process is the rate at which the brain is able to infer 
the statistical structure of the environment.
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The common denominator is that the animal lacks access to reliable cues about 
its environment. As Bateson and Martin (1999) noted: “processes that bring the sensitive 
period to an end are related to the gathering of crucial information and, except in extreme 
cases, do not shut down until that information has been gathered” (p. 162). However, as we 
discussed in Section 2, the fit an animal achieves with its environment depends not only on 
the cues it collects, but also on the distribution of environments its lineage has adapted to 
(its evolved prior). The extent to which a given cue shifts this prior depends on its variance 
as well as the extent of agreement between prior and cue (Stamps & Frankenhuis, 2016). If a 
prior has more variance (more uncertainty about the state of the environment), a given cue 
shifts an estimate more than when it has less variance. And, the more a cue disagrees with 
the prior, the more the prior shifts. 

Evolutionary modeling accordingly predicts, all else being equal, that if animals 
who have different priors are exposed to the same cue, those whose priors and cue are in 
agreement change their phenotypes less than those whose prior and cue disagree (Stamps & 
Frankenhuis, 2016). Biologists have recently tested this novel prediction in fruit flies (Stamps 
et al., 2018). They first showed that larvae vary in the extent to which they are attracted to 
the odor of ethyl acetate (a fruity smelling liquid); some flies had positive priors about ethyl 
acetate, others had negative priors. Then they showed that flies that had positive priors 
changed their behaviors more after an aversive training regime (experimental exposure to a 
negative cue) than flies with negative priors. So, the extent of phenotypic change depended 
on the convergence between prior and cue. 

Similarly, individual variation in the duration of sensitive periods in humans may also 
depend on the agreement between priors and cues. If two individuals who have different 
priors are exposed to the same cues, the individual whose prior and cues agree more might 
lose their plasticity earlier. As priors are inherited from parents (e.g., via the genome or 
epigenome), we might expect children whose environment matches that of their parents to 
have shorter sensitive periods than children who develop in a different environment than 
their parents. Similarly, we might expect individuals who have more consistent experiences 
(e.g., all safe cues versus some safe cues and some danger cues), or more reliable cues (e.g., 
extreme experiences that occur only in extreme conditions) to reduce their uncertainty 
faster, and hence lose their plasticity earlier, than individuals who have less consistent 
experiences or who sample less reliable cues (Frankenhuis & Panchanathan, 2011a, 2011b; 
Panchanathan & Frankenhuis, 2016). To our knowledge, these hypotheses have not been 
tested in humans. The results of such tests would be of great interest to researchers in the 
field of ‘differential susceptibility,’ who study the developmental emergence of individual 
differences in plasticity (Ellis et al., 2011).

2.4 Sensitive periods in adolescence and other life stages

Evolutionary models have shed light on the conditions favoring sensitive periods early 
in life. However, there may be sensitive periods in other life stages as well, such as middle 
childhood (Del Giudice, 2014; Del Giudice & Belsky, 2010) and adolescence (Blakemore 
& Mills, 2014; Dahl, 2004; DePasquale et al., 2018; Fuhrmann et al., 2015; Sachser et al., 
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2018). Some of these sensitive periods might be adaptive. Few formal models, however, 
have explored the evolution of ‘mid-ontogeny’ sensitive periods. In this section, we discuss 
initial steps towards such models.

Adaptive reasons for sensitive periods
In a theoretical paper, Fawcett and Frankenhuis (2015) proposed that sensitive 

periods evolve when there is variation across ontogeny in (a) the availability of cues, (b) 
the informativeness of cues, (c) the fitness benefit of information, and (d) the fitness cost 
of plasticity. First we briefly describe each of these arguments. Then we discuss a model of 
mid-ontogeny sensitive periods, which we recently developed (Walasek et al., 2021). 

(a) A cue might only be available in some life stages and not in others, or be more 
likely to occur in some life stages than others. For instance, Kuzawa (2005) hypothesized 
that pregnant women transmit physiological signals to their fetus, which provide a summary 
of her lifetime nutritional experience, and which the fetus uses to predict its own postnatal 
nutritional environment. As this putative cue is only present inside the womb, people 
may only be sensitive to this cue during the fetal life stage. In a similar way, sensitivity to 
other cues may be limited to later life stages. For instance, courtship cues – e.g., being 
approached with sexual intent – are extremely rare early in life and increase in frequency 
closer to puberty. Therefore, people’s sensitivity to these cues, and their use of such cues in 
guiding their reproductive strategies, might increase over the course of childhood. People 
apparently use the quality of courtship cues to estimate their own desirability as a mate 
– unromantically referred to as ‘mate value’ in the biological sciences – and then use this 
estimate to determine what attributes they expect in future mates (e.g., which value such a 
mate should have, which level of commitment to the relationship, which level of investment 
in shared offspring) (Conroy-Beam et al., 2016). 

A cue might also become available, or increase in frequency, at the life stage in which 
animals first have to navigate the environment on their own, independently of their parents. 
A test case exists when individuals differ in the timing of this species-typical developmental 
milestone. For instance, consistent with the stress acceleration hypothesis, rodent pups that 
receive low levels of maternal care leave the nest at a younger age, and such fledging is 
accompanied by accelerated development of emotion circuits that enable learning about 
dangers that become relevant after fledging (Bath et al., 2016; Callaghan & Tottenham, 2016; 
Gee et al., 2013; Sullivan & Holman, 2010; for research showing parental modulation of 
learning in humans, see Tottenham et al., 2019; for a formal model exploring how a person’s 
attachment style in adulthood may be shaped by relationships early in life, see Chumbley 
& Steinhoff, 2019). In this case, individual variation in leaving the nest, a developmental 
milestone, is associated with individual variation in increased levels of plasticity. Applying 
this idea to human development, we may speculate that people experience a temporary 
increase in plasticity when they move from one environment to another (e.g., moving to 
a new school, or into a new neighborhood). We may also speculate that an increase in 
prediction error could be a mediating mechanism. The old environment was predictable, 
reducing the need for plasticity. After moving the individual might benefit from elevated 
levels of plasticity to learn the statistical structure of the new environment. Thus, by 
hypothesis, changes in the availability and frequency of cues – such as those occurring with 
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a new set of experiences – might increase plasticity in cognitive functions that need to be 
adapted to aspects of the environment that are likely to have changed.

(b) Even if a cue is present throughout ontogeny, it may be more reliable in some 
life stages than others (Fawcett & Frankenhuis, 2015). For instance, in addition to courtship 
cues, people might use non-sexual social cues – such as receiving positive social attention – 
to estimate their mate value. Such social cues are present from birth, but their reliabilities as 
indicators of mate value might increase from infancy to adolescence; that is, social attention 
received by an infant (based on their ‘cuteness’) presumably conveys less information 
about mate value at puberty than social attention received by a prepubescent teen. A 
cue’s reliability sets an upper bound to how much can be learned from a cue. However, the 
amount of information an individual extracts from a cue also depends on her perceptual and 
cognitive abilities. This amount can increase over ontogeny if perceptual systems become 
more accurate as they mature, or if understanding a cue depends on acquired knowledge 
(e.g., a child may not understand a subtle form of social rejection used by adults). In such 
cases, mechanisms using the cue may increase their sensitivity to the cue over the course 
of ontogeny.

(c) Even if a cue provides the same amount of information throughout ontogeny, 
its potential to affect fitness might be higher at some life stages than others (Fawcett & 
Frankenhuis, 2015). For instance, an individual who receives a cue indicative of her mate 
value (e.g., courtship cues) will have more to gain from using this cue around puberty – 
when her future reproductive potential is high – than following menopause. Therefore, we 
may expect individuals to be more sensitive to such cues during adolescence compared with 
old age. In sum: adolescents might be particularly sensitive to social feedback for (at least) 
three different reasons: such feedback might be more available, more reliable, and have 
more scope to affect fitness. 

(d) The costs of plasticity, like its benefits, might vary across ontogeny. These costs 
may include the energy invested in building, maintaining, and running the neural systems 
to perceive and use cues (Auld et al., 2010; DeWitt et al., 1998; Relyea, 2002). Although 
it has been challenging to document costs of plasticity empirically, there are convincing 
examples. For instance, fruit flies bred for enhanced (associative) learning ability evolve 
shorter life spans as a consequence. Their investment in plasticity thus trades off with 
somatic maintenance (Mery & Kawecki, 2003, 2004, 2005). When fruit flies are energetically 
starved (experimentally), their brain shuts down the formation of aversive long-term 
memories, which are costly to produce (Plaçais & Preat, 2013). Re-feeding starved flies, 
however, facilitates memory formation, showing that plasticity can be regained (Hirano et 
al., 2013). This flexibility suggests that plasticity (the ability to adjust development based 
on experience) does not change across ontogeny. Hence this example does not qualify 
as a sensitive period, according to our definition. However, the example does illustrate 
that plasticity may trade off with other energetically expensive activities. Accordingly, if 
all members of a species are low on resources at a particular life stage (e.g., salmon after 
having swum upstream to reproduce and die in their natal patch), we may speculate that 
natural selection favors a species-typical decline in plasticity at this life stage. The idea that 
plasticity is costly might initially seem at odds with the empirical finding that putting breaks 
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on plasticity (e.g., perineuronal nets) is metabolically costly (Werker & Hensch, 2015), but it 
is not. If costly molecular mechanisms exist in order to regulate plasticity, they are a cost of 
plasticity; non-plastic organisms would not need such mechanisms. 

Bridging evolutionary modeling and empirical paradigms
Formal models to date have assumed that cues are equally reliable in all time periods. 

We have recently developed a model in which the cue reliability varies across ontogeny 
(Walasek et al., 2021). In our model, individuals sample cues to the current conditions, 
while gradually – step-by-step, in each time period – tailoring their phenotypes to these 
conditions. We vary the cue reliability in three ways: cues may become more reliable over 
ontogeny (increasing), less reliable (decreasing), or first more reliable and then less reliable 
(triangular). To find out whether natural selection favors sensitive periods in mid-ontogeny, 
we evolve (optimal) developmental strategies in different environments (combinations of 
priors and cue reliability patterns). Then we expose organisms following these strategies 
to experiences (cues) in order to observe optimal decisions and resulting developmental 
trajectories. 

We use ‘study paradigms’ that resemble those used in empirical research on sensitive 
periods to uncover plasticity. Studies of humans typically compare people who have been 
adopted (or have migrated) at different ages with each other, and with people who have not 
been adopted (or not migrated) (Mascie-Taylor & Little, 2004; Pallier, 2003; Zeanah et al., 
2011). Studies of non-human animals (e.g., rodents, birds) often use controlled experimental 
setups, such as cross-fostering paradigms in which animals are experimentally transferred 
at different times between different caregivers or patches (Breed & Moore, 2015), or dose-
dependent experience paradigms that systematically vary the duration and amount of 
exposure to particular experiences (Groothuis & Taborsky, 2015). 

We have explored similar types of paradigms in order to foster a bridge between 
theoretical and empirical studies of sensitive periods. We instantiate these paradigms by 
creating identical twins (clones) that are separated at different times during ontogeny and 
then exposed to different experiences. Next we measure the resulting differences in their 
phenotypes. If these differences are small, the developmental system had little plasticity 
at the time of separation; if it is large, it had much plasticity. We also vary the timing of 
separation. That is, we create and separate twins in each developmental time period. If 
twins separated early in life diverge more than twins separated later, there is a sensitive 
period early in life. If twins diverge most when separated mid-ontogeny, plasticity is highest 
in mid-ontogeny.

We also vary ‘how’ experiences differ between the twins during their separation 
(Figure 2.1). Extreme divergence in experience occurs with yoked, opposite cues; here, if 
one twin samples a danger cue, the other samples a safe cue. This treatment is artificial; 
in empirical studies, it only occurs in controlled lab conditions. However, a milder form 
of divergence, opposite patch cues, more closely matches a situation in which twins are 
separated (through adoption or migration) into different conditions. Third, we explore 
deprivation, receiving cues that are too noisy to extract information from, which corresponds 
to sensory deprivation in lab conditions (Hubel & Wiesel, 1970) or exceptionally traumatizing 
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real-world circumstances. For instance, children might have spent extended time in a dark 
enclosed space while in hiding during wartime (Wolf, 2007) or have grown up in very 
deprived orphanages (Kaler & Freeman, 1994). 

birth mature

adoption

temporary

permanent

end of separation end of ontogeny

. . . . . .. . .

yoked, opposite

opposite patch

deprivation

(1) treatment

(2) separation duration
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Figure 2.1 Measuring changes in plasticity across ontogeny. We separate twins (original, denoted as O, and 
clone, denoted as C) at different ages. We vary three dimensions: treatment, separation duration, and time of 
measurement. (1) Treatment refers to how the experiences of the original and clone differ during their separation. 
The clone might experience yoked, opposite cues; cues from the opposite patch; or deprivation. With yoked 
opposite cues, the clone always samples the opposite cue of the original: if the original samples a minus cue 
[-], the clone samples a plus cue [+]. With cues from the opposite patch, the clone samples a sequence of cues 
typical of the opposite patch: if the original tends to sample more minus cues, the clone tends to sample more 
plus cues. In our Figure, the original and the clone are both in the dangerous patch (denoted as D), but the clone 
receives cues typical of the safe patch (denoted as S). With deprivation, the clone receives cues that are too noisy 
to extract information; thus preventing learning about the environment. (2) Separation duration refers to whether 
the separation of twins is permanent or temporary. Permanent separation occurs if twins experience different 
conditions from their separation until the end of ontogeny (maturity). Temporary separation occurs if twins are 
reunited before the end of ontogeny. (3) Time of measurement refers to when differences in the phenotypes of 
twins are measured. We measure differences in phenotypes of twins at two different time points: at the end 
of their separation and at the end of ontogeny. Our results show that different treatments tend to produce 
(qualitatively) similar patterns of plasticity. Our predictions are therefore similar for different treatments and for 
different measurement times used in empirical research. Copyright: we have used the images of Daphnia with 
permission from Dr. Linda Weiss (2019).

We also compare ‘permanent’ versus ‘temporary’ separation. Permanent separation 
occurs when individuals experience different conditions from their separation until the 
end of ontogeny (maturity). In the real world, permanent separation might occur if one 
child is adopted and another is not, or if children are adopted into different homes. In lab 
conditions, permanent separation occurs in cross-fostering studies. Temporary separation 
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might occur when siblings are separated (e.g., during a war or a natural disaster), and are 
later reunited within one home. In the lab, temporary separation occurs in dose-dependent 
experience studies, in which the experiences of individuals differ to a specific degree at a 
particular time. Finally, we measure differences in phenotypes of twins at two different time 
points: at the end of their separation and at the end of ontogeny. 

In sum: we vary the timing of separation (age), the extent to which experiences 
differ (yoked, opposite cues; opposite patch; and deprivation), and whether separation is 
permanent or temporary. We then measure differences in phenotypes both at the end of 
their separation and at the end of ontogeny. Jointly, these treatments cover many paradigms 
used in empirical research. 

Our results show that natural selection favors sensitive periods in mid-ontogeny in 
two conditions: if cues become more reliable over time, or if cues first become more reliable 
and then less reliable. If cues start out more reliable and become less reliable, sensitive 
periods are never favored. These results are strikingly general across prior probabilities 
(under the assumption that cues are highly reliable in at least some time periods). Sensitive 
periods also look remarkably similar for increasing and triangular cue reliabilities; perhaps in 
both cases organisms already tend to have good estimates of the state of the environment 
in mid-ontogeny (when cue reliabilities start declining in the triangular case and keep going 
up in the increasing case). Previous work has shown that if the cues are equally reliable 
and the environmental state is stable across ontogeny, sensitive periods evolve early in 
life (see Section 2.3). Integrating across models, we conclude that if cue reliabilities are 
either constant or decrease over ontogeny, sensitive periods evolve early in life; but if they 
increase over ontogeny (or are triangular), sensitive periods evolve mid-ontogeny. Our 
results depend on the study paradigm, but only as a matter of degree, not kind. This is good 
news: it means that the predictions of our model should hold across different treatments 
and times of measurement in empirical research.

‘Belief-and-phenotype’ and ‘belief-only’ models
In some models, optimal decisions depend both on an organism’s phenotypic state 

(e.g., traits already developed) and on the information available to an organism about its 
environment (i.e., as a function of its evolved prior and the cues it has sampled during its 
lifetime). Note: such estimates are often referred to as “beliefs”, even though conscious 
deliberation, or even psychological representation, is not necessarily involved. In these 
models, organisms that have identical beliefs might make different decisions because their 
phenotypes differ. Our model is of this kind. We call this a ‘belief-and-phenotype’ model. 
Other models assume a one-to-one mapping between beliefs and phenotypes. In these 
models, organisms do not have phenotypes, only beliefs. Individuals with the same beliefs 
thus always make the same decisions. We call such models ‘belief-only’ models.

Table 2.1 presents for a set of models of the evolution of sensitive periods whether 
each model includes only beliefs or beliefs and phenotypes, how plasticity is quantified, and 
information about the study paradigm. Some models have used an explicit paradigm (like 
the ones we just discussed) to expose changes in plasticity over time; others have not and 
require readers to infer the degree of plasticity. To compare findings and predictions across 
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different models, it would be helpful if, when possible, researchers would use the same 
paradigms or explicitly describe their own paradigm. 

Model
Phenotype 
(P) and/or 
Belief (B)

How is plasticity measured? Study paradigm (if applicable)

Frankenhuis & 
Panchanathan, 2011

P&B Number of cues sampled 

Fischer et al., 2014 P&B Phenotypic adjustment after each 
time period in response to a sampled 
cue, current phenotype, and current 
belief about the environmental state

Phenotypic adjustment is 
measured after each cue; a range 
of cue reliabilities is explored

Stamps & Krishnan, 
2014a

B Difference in beliefs after repeated 
exposure to the same cue

Each individual is exposed to the 
same cue four times; differences 
in beliefs are measured after each 
time period

Stamps & Krishnan, 
2014b

B Within-individual design: absolute 
difference in beliefs before and after 
exposure to a cue at different ages

Sequential design: one individual is 
exposed to two different cues for an 
extended period of time

Difference in beliefs is measured 
after each cue

Three cue reliabilities: high, low, 
and moderate levels of danger 

English et al., 2016 P&B Within-individual effects of temporary 
food supplementation or deprivation 
during different time periods on 
phenotypes (age and size at maturity, 
reproductive success)

Extreme divergence 
(supplementation or deprivation); 
temporary treatment; plasticity is 
measured at the end of ontogeny 

McNamara et al., 
2016

P&B Phenotypic variance of a genotype is 
attributed to different sources of cues

Panchanathan & 
Frankenhuis, 2016

P&B Phenotypic divergence between 
simulated twins as a function of 
separation time

Extreme divergence between 
experiences (yoked opposite 
cues); permanent separation; 
plasticity is measured at the end 
of ontogeny

Stamps & Krishnan, 
2017

B Within-individual design: absolute 
difference between beliefs before and 
after exposure to a cue at different 
ages

Replicate-individual design: absolute 
differences between beliefs after 
exposure to different cues at the same 
age (measured at different ages)

Difference in belief is measured 
after each cue; various patterns of 
cue reliabilities are explored

Table 2.1 Comparison of formal models of sensitive periods. The first column describes the paper in which a model 
was published. The second column describes whether in this model an organism’s decisions depend only on its 
beliefs, or also on its phenotype. Note: the term “belief”, in this context, refers to the information available to an 
organism about its environment as a function of its prior and the cues it has sampled during its lifetime. It does 
not necessarily imply conscious deliberation or even psychological representation. The third column describes 
how plasticity is measured. The fourth column provides additional detail about the testing paradigm (e.g., when 
plasticity is measured). 
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Stamps and Krishnan (2014a, 2014b, 2017) have usefully studied the effects of within-
individual and replicate-individual designs. Within-individual designs measure plasticity 
as the difference in belief both before and after exposure to a cue. Replicate-individual 
designs measure the difference between beliefs of two organisms after each is exposed to 
a different cue. If such designs would be used in all future models, this could accelerate the 
development of an integrative theoretical framework of sensitive periods. 

2.5 Gaps and future directions

We have described the tenets of evolutionary models of sensitive periods, insights 
they provide, predictions they make, and a selection of empirical research on humans and 
other animals. We now turn to gaps in the literature as well as future directions. We have 
already discussed the need for more formal models of the evolution of sensitive periods 
in mid-ontogeny. We have also stressed the need for formal modelers to use a consistent 
set of methods for exposing changes in plasticity across the life course, ideally matching 
commonly-used empirical paradigms, such as studies of adoption and migration, cross-
fostering, and dose-dependent experience. We discuss four other future directions.

First, the field needs more models that explore environmental variation occurring 
within the lifetime of individuals. For instance, in our model of varying cue reliabilities 
(see Section 2.4), experience varies quantitatively (i.e., more or less reliable cues), but 
not qualitatively (i.e., different kinds of experience). However, real animals often face 
different kinds of adaptive challenges and different types of information at different life 
stages (Bjorklund, 1997; Turkewitz & Kenny, 1982). Consider, for instance, the human 
development in the first year of life: “the training sets for statistical learning develop as the 
sensorimotor abilities of the infant develop, yielding a series of ordered datasets for visual 
learning that differ in content and structure between time-points but are highly selective at 
each time-point. These changing environments may constitute a developmentally ordered 
curriculum that optimizes learning across many domains” (Adolph & Hoch, 2019, p. 325; 
see also Smith et al., 2018). Moreover, starting at birth, infants are active agents that scan 
their environments and select the objects and events they attend to (Gibson, 1988). Future 
models could explore the evolution of sensitive periods when the experiences of organisms 
vary qualitatively over ontogeny, either because individuals create a curriculum for learning 
(and how organisms do this might itself be under selection), or because the environmental 
state varies over ontogeny (e.g., seasonality). Which inputs inform experience at different 
times of life will depend on the statistical structure of the environment. Models of such 
inputs should therefore be informed by empirical measures of environmental statistics – in 
particular, cue reliability and autocorrelation of environmental states – known to be critical 
dimensions in the evolution of sensitive periods (Frankenhuis, Nettle, et al., 2019). 

Second, few models of the evolution of sensitive periods have explored the evolution 
of sequences of sensitive periods. Neuroscience suggests that such sequences help to build 
a well-structured brain. For instance: “Each succeeding large-scale region of cortex may 
[…] be thought of as processing increasing orders of invariants from the stimulus stream, 
and passing either the invariant information extracted from the stream, or the residual 
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information once the invariant is extracted, forward to other regions of the brain” (Shrager 
& Johnson, 1996, p. 1119). In this way, the organism incrementally learns about higher-
order invariants and adapts to them. Perceptual ‘constraints,’ previously thought to be 
limitations, might actually facilitate this process, i.e., be adaptations. For instance, infants’ 
vision starting out blurry may help with basic-level category learning (French et al., 2002).

There are models of sensitive periods in neural development, which are often based 
on neural network architectures (Bullinaria, 2003; Ellefsen, 2013; Seidenberg & Zevin, 
2006). These models typically explore the effects of proximate factors and processes, such 
as neuromodulation, on sensitive period development. These models are able to generate, 
for instance, changes in plasticity that resemble those produced by neural processes (e.g., 
sequences of sensitive periods). The goal is typically to evaluate existing hypotheses, or 
to generate novel hypotheses, about proximate factors and processes involved in sensitive 
periods (e.g., how heterogeneity in experience might affect the ability to learn language; 
Seidenberg & Zevin, 2006). These models are not designed, however, to provide insight 
into the evolution of development. Future modeling could integrate both adaptive function 
and mechanism (e.g., exploring the evolution of mechanisms that produce progressive 
sequences of sensitive periods). Such modeling would fit the current agenda in evolutionary 
biology to better integrate mechanisms into optimality models of behavior (Frankenhuis, 
Panchanathan, et al., 2019; Kacelnik, 2012; McNamara & Houston, 2009; Trimmer et al., 
2012).

Third, evolutionary models of sensitive periods to date assume that natural selection 
has equipped organisms with instructions for adaptive behavior; that is, organisms are 
born knowing which decisions are adaptive given their current phenotypic and/or belief 
states. This assumption is appropriate when modeling certain traits, such as defensive 
armor that Daphnia (crustaceans) grow to protect against predation (Agrawal et al., 1999), 
which do not depend on feedback during an individual’s lifetime. There are many cases, 
however, where the development of phenotypes depends on learning from past behaviors 
(Snell-Rood, 2012). When organisms do not come equipped with instructions for adaptive 
behavior, but need to learn such instructions, a division of labor arises: natural selection 
shapes the learning mechanisms and the developing organism learns how to behave 
adaptively (Frankenhuis, Panchanathan, et al., 2019). Recent models have started to 
examine how natural selection might shape the reinforcement learning mechanisms that 
enable organisms to learn adaptive behaviors (e.g., Dridi & Lehmann, 2016; Enquist et al., 
2016; Singh et al., 2010; Yeh et al., 2018). These models however have, to our knowledge, 
yet to examine the evolution of sensitive periods in the learning of adaptive behavior. This 
would be a very exciting direction for future research. Moreover, organisms do not only 
learn specific adaptive behaviors (e.g., how to crack a nut), but also learn and select among 
broader decision-making strategies. For instance, depending on the level of control that an 
organism can exert over its environment (agency), it might calibrate its behavioral responses 
along a continuum ranging from proactive (‘What can I do in this environment?’) to reactive 
(‘What can this environment do to me?’) (Moscarello & Hartley, 2017). Future modeling 
should therefore explore the evolution of sensitive periods in the development of specific 
behaviors as well as broader decision-making strategies. This work may connect with recent 
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models of meta-reinforcement learning, which examine when agents should compose 
meta-policies that can switch among a set of previously learned policies.

Fourth, our future directions so far have focused on ways in which evolutionary 
models can be made more relevant to research in cognitive developmental neuroscience. 
On the other side of the bridge, neuroscientists can help to foster synergies by including 
high-quality measurements, ideally longitudinally, of the physical and social environment 
experienced by individuals in studies on neural development. Evolutionary modelers can 
use such measurements to estimate environmental statistics, such as cue reliability and 
environmental autocorrelation (Frankenhuis, Nettle, & Dall, 2019). Adaptation is essentially 
about the fit between individuals and their environments. Understanding adaptation, 
therefore, requires high-quality measurements of both. Large-scale longitudinal research 
projects that include detailed measurements of individuals’ environments (objective 
measures) and lived experience (subjective measures), as well as measurement of cognitive 
and neural development, hold particularly great promise for synergies with evolutionary 
modeling.

To end: evolutionary biologists have been interested in adaptive behavior and 
development ever since Charles Darwin proposed the process of natural selection. Only 
recently, however, evolutionary biologists have developed an explicit interest in adaptive 
changes in levels of plasticity over the life course. This trend fits perfectly with the long-
lasting focus on sensitive periods in developmental cognitive neuroscience. The time is ripe, 
therefore, for stronger ties and novel synergies between these two exciting fields.
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3.0 Abstract

Sensitive periods are widespread in nature, but their evolution is not well understood. Recent 
mathematical modeling has illuminated the conditions favoring the evolution of sensitive 
periods early in ontogeny. However, sensitive periods also exist at later stages of ontogeny, 
such as adolescence. Here, we present a mathematical model that explores the conditions 
that favor sensitive periods at later developmental stages. In our model, organisms use 
environmental cues to incrementally construct a phenotype that matches their environment. 
Unlike in previous models, the reliability of cues varies across ontogeny. We use stochastic 
dynamic programming to compute optimal policies for a range of evolutionary ecologies 
and then simulate developmental trajectories to obtain mature phenotypes. We measure 
changes in plasticity across ontogeny using study paradigms inspired by empirical research: 
adoption and cross-fostering. Our results show that sensitive periods only evolve later in 
ontogeny if the reliability of cues increases across ontogeny. The onset, duration, and offset 
of sensitive periods — and the magnitude of plasticity — depend on the specific parameter 
settings. If the reliability of cues decreases across ontogeny, sensitive periods are favored 
only early in ontogeny. These results are robust across different paradigms suggesting that 
empirical findings might be comparable despite different experimental designs.
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3.1 Introduction

Sensitive periods are life stages during which experiences shape an organism’s 
phenotypic development to a greater extent than other stages (Bateson, 1979; Fawcett & 
Frankenhuis, 2015). While heightened phenotypic plasticity early in life appears to be the 
norm, it is by no means the rule. As with everything else in nature, the timing of sensitive 
periods varies. Sensitive periods may vary in their onset, duration, and offset across species, 
within species, and even among different traits within a single individual. Zebra finches learn 
their songs early in life, while European starlings are lifelong learners. Human children vary in 
the extent to which exposure to adversity affects maturation rate (Belsky & Pluess, 2009; Del 
Giudice et al., 2011). And, for children adopted from harsh conditions into supportive ones, 
cognitive and emotional systems adjust at different rates (Tottenham et al., 2010; Zeanah 
et al., 2011). Decades of empirical research have advanced our understanding about the 
neurobiological bases of such variation in sensitive periods (Creanza et al., 2016; Knudsen, 
2004), so much so that it is possible in some cases to experimentally modify the timing 
and duration of sensitive periods, and even to “reopen” sensitive periods that had already 
closed, through physiological intervention (Reh et al., 2020; Takesian & Hensch, 2013).

Existing models of sensitive period evolution 
The theory exploring the conditions in which natural selection favors the evolution of 

phenotypic plasticity is well developed and understood (Chevin & Lande, 2011; Lande, 2014, 
2019; Pigliucci, 2005; Via et al., 1995). Recently, formal modeling has focused on the timing 
of plasticity over the life course. These models explore the selection pressures that shape 
sensitive periods (reviewed in Fawcett & Frankenhuis, 2015; Frankenhuis & Fraley, 2017). 
More specifically, they explore how the impact of experience on phenotypic development 
varies across ontogeny.

A general result of models to date is that sensitive periods are typically only favored 
early in ontogeny. This result has been observed in a variety of scenarios, including when 
organisms integrate information inherited through genes (or epigenes) with individual 
experience (Stamps & Krishnan, 2014a, 2014b, 2017), when organisms develop social 
behaviors such as helping (Kuijper et al., 2019), when experiences simultaneously impact the 
phenotype (e.g. a non-lethal predator attack reducing somatic quality) and allow learning 
about the environment (e.g. updating estimates of predator density) (English et al., 2016), 
and when organisms build phenotypes incrementally rather than instantaneously (e.g. 
predator defenses in Daphnia; (Whitman et al., 2009)) while sampling imperfect cues to the 
environmental state (Frankenhuis & Panchanathan, 2011b; Panchanathan & Frankenhuis, 
2016). The duration of plasticity typically depends on the degree to which uncertainty about 
environmental conditions persists across ontogeny. Organisms that are able to reduce their 
uncertainty faster often lose plasticity earlier than organisms that remain uncertain. 

To our knowledge, only two models have documented the evolution of sensitive 
periods later in ontogeny (Fischer et al., 2014; Stamps & Krishnan, 2017). In these models 
the highest levels of plasticity occur halfway through ontogeny. Both models assume 
that organisms start ontogeny with an induced phenotype and that development is fully 
reversible and unconstrainted, such that organisms can express any phenotype at any time 
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during ontogeny. Although these models find that age-dependent declines in plasticity 
are favored across the majority of explored conditions, they also find that plasticity may 
first increase early in ontogeny before decreasing when there is a discrepancy between 
organisms’ inherited information and early-life experiences; that is, when these two sources 
of information indicate different states of the world. More generally, this discrepancy 
rule is said to cause small increases in plasticity early in ontogeny in Bayesian models of 
development, of which the Stamps and Krishnan (2017) model is one example (Fawcett & 
Frankenhuis, 2015; Stamps & Frankenhuis, 2016). 

All models to date – i.e., those that find sensitive periods early in ontogeny as 
well as those that find sensitive periods halfway through ontogeny – have assumed that 
the cue reliability is constant within the lifetime of an organism. It is unknown how this 
assumption affects their shared finding that sensitive periods are typically favored early in 
ontogeny, rarely halfway through ontogeny, and never at the end of ontogeny. In this paper, 
we present a mathematical model that explores the timing of sensitive periods favored by 
natural selection when the cue reliability varies across ontogeny. 

When are mid-ontogeny sensitive periods adaptive?
Though less common, sensitive periods in later developmental stages are widespread. 

In mammals, experiences during adolescence typically influence adult social behavior to 
a greater degree than experiences during childhood (Buwalda et al., 2011; Mutwill et al., 
2020; Sachser et al., 2020). For example, adolescent guinea pigs housed in large colonies 
respond to being transferred to a new colony by developing lower levels of stress and 
aggression as adults, more so than juvenile guinea pigs do (Sachser et al., 2018). In humans, 
adolescence seems to be a period of enhanced plasticity in several neural and cognitive 
traits (Blakemore & Mills, 2014; Dahl, 2004; Fuhrmann et al., 2015; Knoll et al., 2016; Larsen 
& Luna, 2018). For example, adolescents are more sensitive to the effects of social stress, 
such as social isolation, on mental health, and are more capable of recovering from those 
same social stressors compared to children and adults (Fuhrmann et al., 2015). Recent work 
suggests that adolescents, more so than children or adults, rely on learning strategies that 
are specifically suited to exploring novel opportunities and challenges in the environment 
(Raab & Hartley, 2019). 

Some researchers have speculated that natural selection might favor later sensitive 
periods when the reliability of cues varies across ontogeny (Fawcett & Frankenhuis, 2015; 
Frankenhuis & Fraley, 2017). Variation in cue reliability may arise when the information 
available to an organism systematically changes across ontogeny. Such a change may happen 
if organisms use the same cue across ontogeny, but its reliability changes across different 
developmental stages. Another possibility is that organisms receive cues more frequently at 
some developmental stages compared to others, and combining cues increases reliability 
(Fawcett & Johnstone, 2003; Mariette, 2020). A third possibility is that organisms use 
different cues, with different reliabilities, at different developmental stages. In all three 
scenarios, natural selection might have adapted organisms to anticipate changes in cue 
reliabilities across developmental stages.   
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We explore three patterns of cue reliability across ontogeny: ‘increasing’, ‘decreasing’, 
and ‘first increasing and then decreasing’ (or ‘triangular’). Cue reliability might increase 
when an animal estimates its competitive ability in adulthood based on its interactions 
with conspecifics in the juvenile period. For example, during male-male combat animals 
often use an opponent’s relative body size to predict combat outcome and to adjust their 
behavior accordingly, such as whether to fight or not (Li et al., 2018; Matsumura et al., 
2020; McCullough & Simmons, 2016). As the animal and its conspecifics approach their 
adult form, relative body size becomes an increasingly reliable indicator of competitive 
ability in adulthood. Cue reliability might decrease when cues are more frequent, or only 
available, earlier in life. Prenatal cues, for example, may provide an integrative summary of 
the experiences of recent matrilineal ancestors, which predicts future nutritional conditions 
more reliably than early postnatal observations (Kuzawa, 2005). Theoretically, it is also 
conceivable that cue reliability first increases and later decreases. Although examples of this 
pattern may be rarer in nature, we speculate that early adolescent social bonds in humans 
follow such a pattern. Adolescents form strong bonds with peers (Forbes & Dahl, 2010). The 
feedback adolescents receive from these relationships might be more informative about 
their social status or mate value in adulthood than feedback received in early childhood 
or right before the onset of adulthood (Allen et al., 2014; Forbes & Dahl, 2010). We do not 
explore the cue reliability ‘first decreasing and later increasing’. This pattern has not been 
proposed in the literature nor are we aware of empirical examples in nature.

Our contribution 
Here, we develop a model in which organisms sample environmental cues and tailor 

their phenotypes to the environmental state. Phenotypic development is both incremental 
and irreversible, in the sense that organisms gradually adjust phenotypes and that developed 
adjustments cannot be undone. Extending previous work (Frankenhuis & Panchanathan, 
2011b; Panchanathan & Frankenhuis, 2016), we introduce variation in cue reliability across 
ontogeny. We use stochastic dynamic programming to compute optimal developmental 
policies across a range of evolutionary ecologies. Such a ‘policy’ prescribes the optimal 
developmental decision given the organism’s state, which comprises the current phenotype 
and the environmental cues sampled thus far. The optimal policy maximizes expected fitness 
at the end of ontogeny. We then examine these optimal developmental policies to extract 
information about the patterning of phenotypic plasticity across ontogeny. In particular, we 
hope to better understand when natural selection favors the later emergence of sensitive 
periods. 

We also examine how phenotypic variation develops among organisms who follow the 
same optimal policy. Previous models have shown that individual differences in phenotypes 
tend to stabilize across ontogeny (Frankenhuis & Panchanathan, 2011b; Panchanathan & 
Frankenhuis, 2016), but have not quantified this process. To this end, we develop a measure 
of trait repeatability. Repeatability is widely used in studies of animal personality to quantify 
consistency in individual differences over time (Fisher et al., 2018; Kok et al., 2019; Polverino 
et al., 2019; Roberts & DelVecchio, 2000; Trillmich et al., 2018).

Finally, we examine the robustness of our findings by conducting two kinds of 
sensitivity analyses. First, we quantify patterns of plasticity across ontogeny using paradigms 
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commonly used in empirical research. This approach links theoretical and empirical research: 
it allows us to compare qualitative predictions from different empirical paradigms. Second, 
we investigate differences in patterns of plasticity as a result of simplifying the model. 
Some models have incorporated phenotype as a fitness determinant (e.g., Panchanathan 
& Frankenhuis, 2016), and others only the information state of an organism (e.g., Stamps 
& Krishnan, 2014b, 2017). By comparing these models, we can explore to what extent 
our qualitative results generalize across models; whether a complex model structure 
that includes phenotypes alongside information states offers any insights that cannot be 
obtained from an information-only model; and how information state, both on its own and 
in combination with phenotype, affects the evolution of mid-ontogeny sensitive periods. 

3.2 Model

The organism and the environment 
Organisms are born and randomly disperse into discrete and non-overlapping 

patches which can be in one of two states: E0 or E1 (e.g., dangerous or safe). The state of a 
patch does not change over ontogeny. Organisms sample environmental cues and develop 
phenotypes, reproduce proportional to fitness, and die. We assume that organisms have 
adapted to the fixed distribution of patches in the environment (McNamara et al., 2006), 
and use this distribution at the onset of ontogeny as a prior estimate about the probability 
of being in one state or the other.   

Ontogeny consists of T = 20 discrete time periods. Organisms can develop towards two 
phenotypic targets, P0 and P1 which correspond to the optimal, fully specialized phenotypes 
for E0  and E1. Increments toward each of these two phenotypic targets occur on independent 
dimensions; these two phenotypes are not endpoints of a single and continuous trait (for 
similar models, see Frankenhuis & Panchanathan, 2011b; Panchanathan & Frankenhuis, 
2016). For example, we might imagine that an organism can invest in a heavily armored 
phenotype to avoid predation or, instead, invest in a heavily adorned phenotype to attract 
mates. We track increments towards these targets with two numbers: the number of time 
periods specialized towards P0 (denoted by y0) and towards P1 (denoted by y1). At the onset 
of ontogeny organisms start with 0 specializations towards either phenotypic target (y0 = y1 = 
0). In each time period, organisms receive an environmental cue and then either increment 
y0  by 1, increment y1 by 1, or wait and forgo specialization in this time period (leaving y0 and 
y1 unchanged). We denote the number of time periods waited by yw. 

Development is irreversible in the sense that once a phenotypic increment has 
developed, it cannot be undone. However, organisms can switch developmental trajectories 
and specialize towards the other phenotypic target, for instance, because they have revised 
their estimates. At the end of ontogeny, the number of increments towards P0  and P1 and 
the number of time periods waited sum to the total number of time periods (y0 + y1 + yw = T). 
In this way, phenotypic development is constrained by the duration of ontogeny. The later 
organisms start specializing towards one of the phenotypic targets, the fewer increments 
they can make towards it.
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Environmental cues provide informative but imperfect guidance. The reliability of 
a cue indicates the probability of receiving the current cue (C0 or C1) conditioned on being 
in the corresponding environmental state (E0 or E1). We assume that organisms ‘know’ 
the reliability of a cue because they have adapted to the association between cues and 
environmental states over evolutionary time. However, because the reliability of cues 
varies across ontogeny, we denote the cue reliabilities of C0 and C1 at time t as P(C0,t|E0) 
and P(C1,t|E1). The probabilities of observing an incorrect cue then correspond to: P(C1,t|E0) 
= 1 - P(C0,t|E0) and P(C0,t|E1) = 1 - P(C1,t|E1). We assume that the cue reliability is the same in 
both environmental states, i.e., P(C0,t|E0)  = P(C1,t|E1). 

Over time, organisms build up a dataset comprising the cues that they have sampled. 
We denote the sequence of cues until time period t by Dt = {x1, x2, ... xt }, where x1, x2, etc. 
until xt  denote the kind of cue (C0 or C1) received in each time period. At any given time 
t, the state of an organism comprises the developmental decisions it has made and the 
environmental cues it has received, denoted by the tuple (Dt , y0 , y1 , yw , t).   

We consider three patterns of cue reliability across ontogeny: (1) linearly increasing, 
(2) linearly decreasing, and (3) first linearly increasing and then linearly decreasing 
(triangular). All three patterns range between a minimum cue reliability of 0.55 and a 
maximum cue reliability of 0.95. We ensure that the average cue reliability across ontogeny 
is the same across cue reliability patterns. This controls for the total information available 
to organisms across all of ontogeny. To explore whether results are driven by the maximally 
attainable cue reliability, we also computed results for patterns ranging between 0.55 and 
0.75 (see Appendix 1, Figure A1.1). Results from both ranges were qualitatively similar, so 
we report only the range 0.55 to 0.95 in the main text.

We assume that organisms are Bayesian learners (Dall et al., 2015; Mangel, 1990; 
McNamara et al., 2006; Mcnamara & Houston, 1980; Stamps & Frankenhuis, 2016; Trimmer 
et al., 2011; Tufto, 2000), using the fixed distribution of patches as the prior estimate of 
the environmental state and the time-dependent cue reliabilities to update these estimates 
(Stamps & Frankenhuis, 2016). To see how this works, suppose an organism has sampled 
a specific sequence of cues Dt = 3 = {C0, C1, C0}. According to Bayes’ theorem, its posterior 
estimate after the first cue is: 

  

 

 

 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐶𝐶𝐶𝐶0) =  
𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) • 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0)

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) • 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) +  𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸1) • 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐶𝐶𝐶𝐶0) = 1 −  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐶𝐶𝐶𝐶0) 

(1) 

To compute the posteriors 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) after the whole sequence of cues, we have to 

reapply Bayes’ theorem for each cue using the previous posterior as the new prior. We provide an 

overview of our variables and the Bayesian inference in Appendix 1 (‘Dynamic programming 

equations’ sections a and b). Additionally, we depict which posteriors result from different cue 

reliability patterns and priors in the online supplements. 

(1)

To compute the posteriors P(E0|Dt) and P(E1|Dt) after the whole sequence of cues, we 
have to reapply Bayes’ theorem for each cue using the previous posterior as the new prior. 
We provide an overview of our variables and the Bayesian inference in Appendix 1 (‘Dynamic 
programming equations’ sections a and b). Additionally, we depict which posteriors result 
from different cue reliability patterns and priors in the online supplements.
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Mapping from phenotypes to fitness
We assume that fitness is accrued at the end of ontogeny (e.g., adulthood). A mature 

organism accrues fitness depending on how well its phenotype matches the environmental 
state. The better the match, the higher the fitness. Therefore, the earlier an organism 
specializes, the more it can improve its fit with the environment (Panchanathan & Frankenhuis, 
2016). In this way, there is an opportunity cost to delaying phenotypic specialization (Dunlap 
& Stephens, 2016). In addition, we assume that developing a phenotype that does not match 
the environmental state reduces fitness, and the penalty magnitude depends on the degree 
of mismatch (Innes-Gold et al., 2019). We do not, however, assume a constitutive cost of 
plasticity in the sense that there is no explicit cost for building, running, and maintaining the 
physiological mechanisms enabling plasticity (Auld et al., 2010; DeWitt et al., 1998; Relyea, 
2002). Nor do we assume a ‘switch cost’ if organisms switch from specializing from one 
phenotypic target to another. 

Equations (2) – (4) show the mapping of phenotypic increments to fitness rewards and 
penalties at the end of ontogeny (see also Appendix 1 ‘Dynamic programming equations’, 
section c). We denote the mature phenotype at the end of ontogeny by Ymat = (y0,  y1, T). The 
parameter π0 corresponds to the baseline fitness of an organism that waited throughout 
ontogeny, never specializing toward either phenotypic target. The expression ϕ(Ymat)  
corresponds to the fitness reward for correct phenotypic specializations. The expression 
ψ(Ymat) corresponds to the fitness penalty for incorrect specializations. Thus, total fitness, 
π(Ymat), is:

π(Ymat) = π0 + ϕ(Ymat) + ψ(Ymat)  (2)

We explore three mappings between phenotypic increments and fitness effects. With 
‘linear’ fitness effects, each correct (or incorrect) increment results in a constant marginal 
fitness gain (or loss). With ‘decreasing’ fitness effects, the marginal fitness gain (or loss) 
of each correct (or incorrect) increment decreases. And with ‘increasing’ fitness effects, 
the marginal fitness gain (or loss) of each correct (or incorrect) increment increases. The 
formulas for these mappings can be found in Appendix 1 ‘Dynamic programming equations’, 
section c. The attainable fitness payoff for a perfectly matched organism is the same for each 
fitness mapping and for each environmental state. 

To see how these mappings work, suppose that an organism has sampled a specific 
sequence of cues, Dt, throughout ontogeny. Its posterior estimates P(E0|Dt = T) and P(E1|Dt 

= T) reflect the probabilities of being in either environmental state at the end of ontogeny. 
Thus, to compute rewards and penalties, we need to compute the expectation across both 
environmental states, weighted by how likely each state is, as indicated by the posterior 
estimates at the end of ontogeny. We denote the mapping from phenotypic increments to 
rewards and penalties by f (y), where y can refer to both y0 and y1, and derive the following 
expressions for expected rewards and penalties: 
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 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 

𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

(3) 

 

Inserting this into equation (2) results in the final formula for total fitness at the end of 

ontogeny: 

 

 𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1)  

− �𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

(4) 

 

Optimal developmental policies  

We use stochastic dynamic programming to compute optimal developmental policies for 

different evolutionary ecologies (Mangel & Clark, 2019; Mcnamara & Houston, 1980). We explore 

three prior distributions of environmental states: 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) =  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) = 0.5, 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) = 0.3 and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) =

0.7, and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) = 0.1 and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) = 0.9; and three cue reliability patterns: increasing, decreasing, and 

triangular. For each possible state of an organism (𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡), stochastic dynamic programming 

identifies the developmental decision that will result in the highest expected fitness at the end of 

ontogeny. In the event of a tie between two or more options in a particular state, the organism chooses 

amongst the current alternatives with equal probability. 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) denotes the maximum 

expected fitness that can be attained as a result of decisions made between 𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑇𝑇. The organism 

chooses option 𝑎𝑎𝑎𝑎 to maximize expected fitness:    

 

 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) = max
𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎{0,1,𝑤𝑤𝑤𝑤}

𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚 , where 

𝐹𝐹𝐹𝐹0 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0 + 1,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇), 

𝐹𝐹𝐹𝐹1 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1 + 1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇), 

𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 + 1, 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇). 

(5) 

  

For each possible state of an organism we initialize 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇), which represents the fitness 

at the end of ontogeny, with 𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) as defined in equation (4). Using this as a starting point, we 

(3)

Inserting this into equation (2) results in the final formula for total fitness at the end 
of ontogeny:
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 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 
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amongst the current alternatives with equal probability. 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) denotes the maximum 
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 (4)

Optimal developmental policies 
We use stochastic dynamic programming to compute optimal developmental policies 

for different evolutionary ecologies (Mangel & Clark, 2019; Mcnamara & Houston, 1980). 
We explore three prior distributions of environmental states: P(E0) = P(E1) = 0.5, P(E0) = 0.3 
and P(E1) = 0.7, and P(E0) = 0.1 and P(E1) = 0.9; and three cue reliability patterns: increasing, 
decreasing, and triangular. For each possible state of an organism (Dt , y0, y1, yw ,t), stochastic 
dynamic programming identifies the developmental decision that will result in the highest 
expected fitness at the end of ontogeny. In the event of a tie between two or more options 
in a particular state, the organism chooses amongst the current alternatives with equal 
probability. F(Dt , y0, y1, yw ,t, T) denotes the maximum expected fitness that can be attained 
as a result of decisions made between t and T. The organism chooses option a to maximize 
expected fitness:  
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(5)

For each possible state of an organism we initialize F(Dt , y0, y1, yw ,T, T), which 
represents the fitness at the end of ontogeny, with π(Ymat) as defined in equation (4). Using 
this as a starting point, we solve equation (5) via backwards induction. We also describe our 
approach to computing optimal policies in Appendix 1 (‘Dynamic programming equations’, 
section d). Our code, written in Python 2.7, is available on GitHub (https://github.com/
Nicole-Walasek/sensitive-periods-with-varying-cue-reliabilities).

Quantifying plasticity 
We use a simulated ‘twin’ study to quantify trajectories of plasticity across ontogeny. 

We first simulate 10,000 pairs of twins with identical phenotypes and posteriors following 
the optimal policy up to time period t. From each pair we keep one twin in its natal patch (the 
focal individual) and move the other one into a “mirror” patch (the clone). From the time 
of separation until the end of ontogeny, the focal individual and the clone receive opposite 
environmental cues. That is, whenever the focal individual receives a cue indicating E0, the 
clone receives a cue indicating E1, and vice versa. 
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We then compare the mature phenotypes of twin pairs at the end of ontogeny. We 
define plasticity as the Euclidean distance between the two twins along the two phenotypic 
dimensions (y0 and y1). The larger the difference between mature twins, the more cues have 
shaped their phenotypes since their separation; thus, the more developmentally plastic 
these twins were at the time of their separation. Our paradigm resembles twin studies that 
compare similarities and differences between adult twins who were separated at different 
points in ontogeny to assess the impact of genetic and environmental factors on phenotypic 
development.

We distinguish between two measures of plasticity, ‘absolute’ and ‘proportional’. 
Absolute plasticity is the average Euclidean distance across simulated twin pairs normalized 
to range between 0 and 1. Proportional plasticity is the average Euclidean distance between 
simulated twins, divided by the maximally achievable Euclidean distance from the moment of 
separation until the end of ontogeny. In contrast to absolute distance, proportional distance 
accounts for potential phenotypic distance, which is smaller the later separation occurs, 
as there is less time for twins to diverge. We offer both measures to facilitate comparison 
across different theoretical models and/or empirical studies that potentially use one or the 
other (or both) measures to quantify plasticity. 

Quantifying rank-order stability 
We developed a measure of trait repeatability to quantify the process by which 

individual differences in phenotypes develop and might stabilize over ontogeny. We assume 
that organisms within a population that show high trait repeatability also show stable 
phenotype ranks across ontogeny. Specifically, we assume that the higher trait repeatability 
is, the lower the likelihood of rank-switches between two time periods. We simulate a 
population of 10,000 organisms and rank them at each time point during ontogeny based on 
their phenotypic values. At each time period we compute the proportion of individuals that 
experiences a rank-switch (relative to the population size, which is constant) from one time 
period to the next. Organisms that have the same trait value share a rank. This paradigm 
allows us to compute not only the proportion of rank-switches between consecutive time 
periods, but also that between periods farther apart. 

Sensitivity analyses
We conduct two different kinds of sensitivity analyses. First, we explore whether 

results are robust to variations in the basic twin study paradigm. Specifically, we vary (1) 
the degree to which cues sampled by the separated clone differ from those sampled by 
its identical twin; (2) whether separation is temporary, lasting only for a fixed number of 
time periods, or permanent until the end of ontogeny; and (3) whether twins are compared 
directly after separation rather than at the end of ontogeny. These paradigms resemble those 
used in empirical research with humans in developmental psychology or epidemiology and 
with non-human animals in behavioral ecology (Frankenhuis & Walasek, 2020). By varying 
the degree to which cues between separated twins differ we capture ‘dose-dependent 
experience studies’ which, for example, study how matched individuals from the same 
litter respond to different dosages of the same treatment. We vary separation duration and 
measurement time to capture ‘cross-fostering studies’, in which a subset of individuals is 
removed from their natal environment and raised in a different environment for some time 



3

Evolutionary model of sensitive periods when reliability of cues varies across ontogeny   |   55   

to disentangle the effects of rearing environment and subsequent differences in experience 
on phenotypic development. Differences between separated individuals and control 
individuals can be measured at the end of the separation duration, or at some later time 
after the separated individuals have been reintroduced to their original environment. By 
comparing these different paradigms, we are able to explore to what extent developmental 
trajectories of phenotypic plasticity uncovered in empirical studies may vary as a function 
of study paradigm. We depict the paradigms in Figure 3.1. We show the trajectories of 
phenotypic plasticity that result from these different paradigms in Appendix 1, Figures 
A1.6-A1.9. 

Second, we explore the extent to which optimal decisions depend on phenotypic 
states versus posterior estimates. In our model, optimal decisions depend both on an 
organism’s phenotypic state and on its posterior estimate. Accordingly, organisms with 
identical posteriors might make different decisions because their previously constructed 
phenotypes differ. Other kinds of models, however, have assumed a one-to-one mapping 
between posteriors and phenotypes (e.g., Stamps & Krishnan, 2014b, 2017). To explore to 
what extent the inclusion of phenotypic states yields qualitatively different outcomes than 
a posterior-only model, we compare patterns of plasticity derived from both models when 
the reliability of cues varies across ontogeny. In line with our basic twin study paradigm, 
we compare the average proportional phenotypic distance and average difference in 
posterior estimates across 10,000 simulated pairs of twins at the end of ontogeny, following 
permanent separation. 
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Figure 3.1 Measuring changes in plasticity across ontogeny. We separate twins (original, denoted with O, and 
clone, denoted with C) at different ages. We vary three dimensions: treatment, separation duration, and time of 
measurement. (1) Treatment refers to how the experiences of the original and clone differ during their separation. 
The clone might experience reciprocal opposite cues; cues from the opposite patch; or deprivation. With reciprocal 
opposite cues, the clone always samples the opposite cue of the original: if the original samples a minus cue [-], the 
clone samples a plus cue [+]. With cues from the opposite patch, the clone samples a sequence of cues typical of 
the opposite patch: if the original tends to sample more minus cues, the clone tends to sample more plus cues. In 
our Figure, the original and the clone are both in the dangerous patch (denoted with D), but the clone receives cues 
typical of the safe patch (denoted with S). With deprivation, the clone is equally likely to sample a plus or a minus 
cue; thus preventing learning about the environment. (2) Separation duration refers to whether the separation of 
twins is permanent or temporary. Permanent separation occurs if twins experience different conditions from their 
separation until the end of ontogeny (maturity). Temporary separation occurs if twins are reunited before the end 
of ontogeny. (3) Time of measurement refers to when differences in the phenotypes of twins are measured. We 
measure differences in phenotypes of twins at two different time points: at the end of their separation and at the 
end of ontogeny. Our results show that different treatments tend to produce (qualitatively) similar patterns of 
plasticity. Our predictions are therefore similar for different treatments and for different measurement times used 
in empirical research. Copyright: this Figure has been adapted from Frankenhuis and Walasek (2020) and we have 
used the images of Daphnia with permission from Dr. Linda Weiss (2019).

3.3 Results

In the main text, we describe results for linear rewards and linear penalties. We 
present results from other combinations of reward and penalty functions in SM 5 of the 
online supplements. We also provide additional analyses allowing comparison of results 
from this model with results of a previously published model of incremental development 
exploring fixed cue reliabilities (Panchanathan & Frankenhuis, 2016), in SM 5 of the online 
supplements and Appendix 1 (Figures A1.2-A1.3). 
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Sensitive periods may occur halfway through ontogeny 
With absolute plasticity, sensitive periods are only favored early in ontogeny (Figure 

3.2, grey lines and squares). With proportional plasticity, natural selection might favor 
sensitive periods in mid-ontogeny, but only if the cue reliability increases across ontogeny 
or first increases and then decreases, resulting in a triangular pattern (Figure 3.2, black 
lines and circles). Peaks are higher for the triangular cue reliability pattern, because the 
reliability of cues increases more rapidly during the first half of ontogeny. With decreasing 
cue reliabilities, sensitive periods evolve only early in ontogeny. 

In most conditions, optimal policies track the cue reliabilities across time, meaning 
plasticity is highest when the cue reliability is highest. However, this is not always the case. 
When the cue reliability increases, plasticity peaks halfway through ontogeny, while cues 
are moderately reliable. By then, some organisms—those who have sampled consistent 
cue sets (see below)—have achieved a high level of confidence and their plasticity starts to 
decline.

Prior distributions only have a quantitative but not a qualitative impact on these 
patterns: the more uniform the prior distribution is, the lower the level of overall plasticity 
across ontogeny, as measured by the area under the curve. This small effect of prior is 
moderated by the cue reliability. Prior distributions have the strongest effect when cue 
reliabilities peak only at the end of ontogeny (increasing cue reliability). This makes sense. 
When information quality is low and one environmental state is much more likely than the 
other, organisms eschew plasticity and pick the more likely option. 

Early in ontogeny prior distributions shape posterior estimates and thereby affect 
phenotypic development. However, as ontogeny proceeds and organisms sample more 
cues, the adjustment in posteriors and phenotypes in response to cues converges and 
becomes independent of the initial prior and cues take over in shaping both posteriors and 
phenotypes (Appendix 1, Figure A1.4). Eventually, phenotypic plasticity declines regardless 
of the prior distribution and cue reliability pattern. Plasticity declines more steeply if 
organisms have access to reliable cues earlier in ontogeny, as is the case for the decreasing 
and triangular pattern. More reliable cues imply more consistency in cue sequences. Thus, 
the optimal policy instructs organisms to lose plasticity early in ontogeny and to invest into 
phenotypic specialization to reap fitness benefits (Frankenhuis & Panchanathan, 2011b; 
Panchanathan & Frankenhuis, 2016).

Previous models of stable environments also find that plasticity is higher early in 
ontogeny and then rapidly declines when cue reliability is high and constant across ontogeny 
(Frankenhuis & Panchanathan, 2011b; Panchanathan & Frankenhuis, 2016; Stamps & 
Krishnan, 2017). Organisms use highly reliable cues at the onset of ontogeny to drastically 
reduce uncertainty about their environment, eliminating the need for continued plasticity. 
For the same reason, we find early-ontogeny sensitive periods with the decreasing cue 
reliability pattern. Combining our findings and those from previous models, we speculate 
that in environments that are stable across ontogeny, any pattern in which cues are highly 
reliable at the onset of ontogeny will lead to sensitive periods early in ontogeny. However, 
when the state of the environment fluctuates across ontogeny, we speculate that highly 
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reliable cues early in ontogeny are often not sufficient to reduce uncertainty about future 
conditions. Under these conditions, natural selection may favor prolonged plasticity if the 
reliability of cues decreases across ontogeny, or even multiple sensitive periods if the cue 
reliability first decreases and then increases.

Figure 3.2 Plasticity across ontogeny. The fitness rewards for correct specializations and fitness penalties for incorrect 
specializations are linear across all panels (see SM 5 in the online supplements for other combinations of rewards and 
penalties). The prior probability of E1 varies across columns and the cue reliability pattern varies across rows. Each 
panel represents T experimental ‘twin studies’, one for each t ϵ {1, T}. Outcomes of each twin study are marked by 
a grey diamond and a black circle. For each study we simulate 10,000 pairs of identical twins who follow the optimal 
policy and track their development across ontogeny. The environmental state is fixed to E1. For each pair of twins, 
one individual (the ‘focal’) receives a set of environmental cues across ontogeny simulated from the prior probability 
and cue reliability pattern. Its clone receives the same cues until the moment of separation in time period t after 
which it begins to receive reciprocal, opposite cues, which lasts until the end of ontogeny. The vertical axis within 
each panel depicts the phenotypic distance between focal individuals and their clones. The horizontal axis depicts the 
time period in which pairs of twins were separated. The phenotypic distance at the end of ontogeny between a focal 
individual and its clone corresponds to the Euclidean distance between their phenotypes. Grey lines and diamonds 
depict ‘absolute’ phenotypic distance, the average distance between the 10,000 focal individuals and their clones at 
the end of ontogeny (ranging from 0 to 20√2, scaled to a 0 to 1 range). Black lines and circles depict ‘proportional’ 
distance, the average absolute distance divided by the maximum possible distance following separation.
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Individual differences in sensitive periods
Across the entire range of parameter values, natural selection favors early plasticity 

that declines across ontogeny and tends toward zero by the end (Figure 3.3). This gradual 
decline in plasticity, however, masks substantial individual variation in the onset, duration, 
and offset in sensitive periods. Organisms that receive consistent cue sets early in ontogeny 
become insensitive to cues earlier in ontogeny, whereas organisms that receive inconsistent 
cue sets prolong plasticity. Consistent cue sets are those in which a large fraction of cues 
indicate one environmental state over the other.

The consistency of cue sets is related to the cue reliability pattern. When the reliability 
of cues decreases, cue sets are relatively consistent early in ontogeny and inconsistent later 
in ontogeny. In this case, natural selection favors early sensitivity and a rapid decline in 
plasticity across ontogeny. When the reliability of cues first increases and then decreases 
(triangular pattern), cue set consistency at first increases and peaks at mid-ontogeny before 
turning and becoming increasingly inconsistent. Here, plasticity declines rapidly after mid-
ontogeny. When the reliability of cues increases, early cue sets are inconsistent and become 
increasingly more consistent over time. Organisms in this case prolong plasticity well beyond 
mid-ontogeny.
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Figure 3.3 Optimal developmental policies. The fitness rewards for correct specializations and fitness penalties for 
incorrect specializations are linear across all panels (see SM 5 in the online supplements for other combinations 
of rewards and penalties). The prior probability of E1 varies across columns and the cue reliability pattern varies 
across rows. Each panel depicts the optimal developmental policy for the corresponding parameter values as well 
as information about the probability of reaching each possible state. The horizontal axis shows developmental 
time and the vertical axis shows an organism’s estimate of being in E1. Each organism begins ontogeny with the 
same prior (large grey circle) and then, in each time period, samples a cue, updates its posterior, and makes a 
phenotypic decision. Beige lines represent possible changes in posteriors across development, tracking possible 
developmental trajectories. Colored circles represent phenotypic decisions: black indicates waiting, red specializing 
towards P0, and blue specializing towards P1. The area of a circle is proportional to the probability of reaching 
the corresponding state. These probabilities sum to one within a time period. We only show states that have a 
probability of more than 0.5% of being reached.
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Repeatability depends on the environment
We track the proportion of rank-switches in a population of developing organisms 

across ontogeny to infer trait repeatability. This allows us to quantify and visualize how 
individual phenotypic differences develop and stabilize over time. 

Across prior distributions and cue reliability patterns, the proportion of rank-switches 
decreases as ontogeny proceeds indicating an increase in trait repeatability (bar charts in 
Figure 3.4). Over time organisms become more certain of their environmental state and 
consistently specialize towards it. When the prior distribution is uniform (0.5; left column, 
Figure 3.4), the decrease in rank-switches across ontogeny is accelerated when organisms 
have access to highly reliable cues early in ontogeny (decreasing cue reliability; bottom 
row, Figure 3.4). When cue reliability is low early in ontogeny (increasing or triangular cue 
reliability; top and middle rows, Figure 3.4), organisms ‘drift’ early on, resulting in more rank-
switches, and only settle on specialization trajectories later on, after sufficiently reducing 
uncertainty about the environmental state. 

When the prior distribution is informative (0.7 or 0.9; middle and right columns, 
Figure 3.4), the proportion of rank-switches might increase during mid-ontogeny when the 
cue reliability starts out low and increases over time, as a consequence of increasing or 
triangular cue reliabilities; top and middle rows, Figure 3.4). Under these conditions, the 
majority of organisms within a population starts specializing towards the same environmental 
state based on their priors, which keeps the proportion of rank-switches low. As the cue 
reliability begins to increase, organisms’ posteriors are more likely to shift, leading to more 
phenotypic ‘drifting’. This ‘drifting’ increases the proportion of rank-switches and thus 
temporarily lowers trait repeatability. 
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Figure 3.4 Rank-order stability. The fitness rewards for correct specializations and fitness penalties for incorrect 
specializations are linear across all panels (see SM 5 in the online supplements for other combinations of 
rewards and penalties). The prior probability of E1 varies across columns and the cue reliability pattern varies 
across rows. Each panel depicts a simulation of 10,000 organisms following the optimal policy across ontogeny. 
The environmental state is fixed to E1. In each time period, organisms are ranked according to the number of 
specializations towards P0. Organisms with the same number of specializations share a rank. Each square panel 
depicts two sets of results, one in the upper right triangle and another in the lower left triangle. For the upper right 
triangle, the relevant axes are the horizontal and the left vertical, each depicting the full range of ontogenetic time 
periods. Each cell in this triangle indicates the proportion of rank-switches occurring from the time period on the 
horizontal axis to the time period on the (left) vertical axis in gray scale, with lighter cells indicating fewer rank-
switches and darker cells more rank-switches. The lower left triangle within each panel zooms in on the diagonal of 
the upper right triangle, depicting the proportion of rank-switches between consecutive time periods in a bar chart. 
We highlight this scenario as it is the most relevant for empirical research on animal personality where repeatability 
is typically measured across consecutive years. For this portion of the panel, the horizontal axis depicts ontogenetic 
time periods and the right vertical axis depicts the proportion of rank-switches in that time period.
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Results are robust to study paradigm 
We conducted the simulated twin study (depicted in Figure 3.2) under different study 

paradigms, resembling those used in empirical studies of ontogenetic changes in phenotypic 
plasticity. To capture a wide variety of empirical paradigms, we vary three dimensions of our 
original twin study: (1) the degree to which cues sampled by the separated clone differ from 
those sampled by its identical twin; (2) whether separation is temporary and thus only lasts 
for a fixed number of time periods, or permanent until the end of ontogeny; and (3) whether 
twins are compared directly after separation or at the end of ontogeny. 

We find that the degree to which cues between separated twins differ does not 
change qualitative changes in phenotypic plasticity, but merely influences the total 
magnitude of plasticity across ontogeny (Appendix 1, Figures A1.6-A1.7). Not surprisingly, 
we observe that larger differences in sampled cues between separated twins result in 
greater magnitudes of phenotypic plasticity across ontogeny. When the separation of twins 
is temporary, plasticity measured at the end of ontogeny reflects the long-term effects of 
this separation. This measure illustrates to what extent the time periods in which twins 
have reunited buffer against further phenotypic divergence or even initiate phenotypic 
convergence of twins. When plasticity is measured at the end of ontogeny and cue 
reliabilities increase, plasticity nonetheless tends to increase towards the end of ontogeny 
(Appendix 1, Figure A1.8, first row). This indicates that highly reliable cues have a major 
long-term effect on phenotypic development, even in the later stages of ontogeny. This 
enduring effect cannot be compensated for by short time windows in which twins have 
reunited. Plasticity measured directly after temporary separation quantifies the short-term, 
immediate effects of separation (Appendix 1, Figure A1.9). Immediate effects of separation 
are largest if separation occurs when twins are uncertain about environmental conditions 
due to a uniform prior distribution and/or when cues are highly reliable during the window 
of separation. 

Mid-ontogeny sensitive periods might depend on both phenotypes and posteriors 
As part of our sensitivity analysis, we explore whether resulting patterns of sensitive 

periods depend on our assumption of modeling phenotypic states alongside information 
states. Specifically, we compare patterns of plasticity in a phenotype-and-posterior model 
(black lines and circles, Figure 3.4), in which developmental decisions are shaped by 
phenotypic states that are coupled with posterior estimates, and a posterior-only model 
(gray bars, Figure 3.5), which assumes a one-to-one mapping between phenotypes and 
posteriors. Unfortunately, we are not able to meaningfully interpret the differences in 
magnitude of plasticity between both models, because differences in posterior estimates 
and differences in phenotypes are measured in different units. The former is computed 
as the difference in posterior probabilities while the latter is computed as the normalized 
Euclidean distance between phenotypes. Thus, we will only discuss qualitative differences 
in patterns of plasticity across models. 
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Figure 3.5 Plasticity in phenotype and posterior estimate. The fitness rewards for correct specializations and fitness 
penalties for incorrect specializations are linear across all panels. The prior probability of E1 varies across columns 
and the cue reliability pattern varies across rows. As in Figure 3.2, each panel represents T experimental ‘twin 
studies’, one for each t ϵ {1, T}. Black circles correspond to the phenotype-and-posterior and gray bars to the 
posterior-only model. For each study we simulate 10,000 pairs of identical twins who follow the optimal policy 
and track their development across ontogeny. The environmental state is fixed to E1. For each pair of twins, one 
individual (the ‘focal’) receives a set of environmental cues across ontogeny simulated from the prior probability 
and cue reliability pattern. Its clone receives the same cues until the moment of separation in time period t after 
which it begins to receive reciprocal, opposite cues, which lasts until the end of ontogeny. The vertical axis within 
each panel depicts the difference between focal individuals and their clones in the phenotype-and-posterior model 
and the posterior-only model. The horizontal axis depicts the time period in which pairs of twins were separated. 
Black lines and circles depict the average Euclidean distance between the 10,000 focal individuals and their clones 
at the end of ontogeny (ranging from 0 to 20√2, scaled to a 0 to 1 range), divided by the maximum possible 
distance following separation. Gray bars correspond the average absolute distance in posteriors between those 
same simulated organisms at the end of ontogeny. 
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Qualitative patterns look largely similar across models. Across all parameter 
combinations phenotypic plasticity tends to decline with age. However, we also observe 
differences: phenotypic distances across separated twins might increase when separation 
occurs later during ontogeny, while differences in posterior estimates between those same 
twins decrease or remain unchanged. To illustrate this difference, we plot the gradients of 
both plasticity curves in Appendix 1 (Figure A1.5). This result implies that natural selection 
favors mid-ontogeny increases in plasticity in the phenotype-and-posterior model but not 
in the posterior-only model. Both phenotypic state and information available thus act as 
selection pressures in our model when shaping mid-ontogeny sensitive periods. Thus, only 
modeling the information state of an organism is not sufficient to explain mid-ontogeny 
sensitive periods. 

3.4 Discussion

We have modeled the evolution and development of sensitive periods when 
organisms construct their phenotypes incrementally and the reliability of cues varies across 
ontogeny. We used stochastic dynamic programming to compute optimal developmental 
policies across a range of evolutionary ecologies, varying the prior distribution of 
environments, the cue reliability pattern, and the mapping of phenotype onto fitness. From 
these optimal policies, we derived changes in phenotypic plasticity across ontogeny. We 
discuss five insights from our model and limitations and future directions. 

Mid-ontogeny sensitive periods may evolve when the reliability of cues increases
We find that sensitive periods evolve in mid-ontogeny when the reliability of cues 

is low at the onset and increases over, at least some portion of, ontogeny. Unlike previous 
models (Fischer et al., 2014; Stamps & Krishnan, 2017) we find mid-ontogeny sensitive 
periods when prior and acquired information are consistent with each other, thus identifying 
increases in cue reliability as the cause of increases in plasticity in our model. Moreover, 
whereas the previous models find a relatively small plasticity bump at the beginning of 
ontogeny, our model produces bumps that extend across a substantial portion of ontogeny. 

Fuhrman et al. (2015) reviewed evidence for adolescence being a sensitive period 
of brain development in humans and distinguished three models of plasticity: a discrete 
and punctuated period of heightened plasticity in adolescence, a continuous and constant 
sensitive period across childhood and adolescence, or a continuous and gradual decline 
of plasticity across childhood and adolescence. Our modeling results suggest that natural 
selection can favor each of these three models, depending on the evolutionary ecology. 
For example, if cues were, on average, unreliable early and late in ontogeny, with a peak in 
mid-ontogeny, natural selection might favor a discrete period of heightened plasticity during 
mid-ontogeny. When cues are, at first, unreliable and gradually increase in reliability across 
ontogeny, natural selection might favor a continuous sensitive period across childhood. 
This pattern is especially favored when the distribution of environmental states is uniform 
and thus making it harder for developing organisms to predict their environment before 
having sampled any cues. Lastly, if cues are at first highly reliable and decline in reliability 
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across ontogeny, natural selection might favor an initially high period of sensitivity with a 
continuous decline in plasticity across childhood.

There are individual differences in the timing of sensitive periods 
Using a similar modeling framework to this paper’s, Frankenhuis and Panchanathan 

(2011a, 2011b) and Panchanathan and Frankenhuis (2016) showed that individuals who 
sample more consistent cue sets might shed plasticity earlier in ontogeny. Here, we add 
that the opportunity to gather reliable information later in ontogeny might prolong sensitive 
periods beyond early ontogeny, even resulting in mid-ontogeny sensitive periods. However, 
organisms of the same population show inter-individual differences in the level of elevation 
of plasticity during these mid-ontogeny sensitive periods. Because cues are noisy, organisms 
of the same population will vary in the extent to which they are certain of the state of their 
environment due to sampling different sequences of cues, with inconsistent sequences of 
cues resulting in more uncertainty. The more uncertain organisms are when the opportunity 
to gather reliable information arises, the higher their peaks in mid-ontogeny sensitive 
periods. This finding suggests that empirical studies are most likely to observe mid-ontogeny 
sensitive periods if organisms start out uncertain (e.g. have experimentally evolved a 
uniform prior) and receive highly reliable cues midway ontogeny.

Individual differences tend to stabilize across ontogeny 
Kok et al. (2019) suggest that increased exposure to reliable cues across ontogeny 

might reduce organisms’ uncertainty about their environment, leading to fewer adjustments 
of phenotypic traits, such as exploration behavior. This process, they argue, might cause age-
related increases in trait repeatability. When organisms in our model are initially uncertain 
about their environment due to a uniform prior distribution and the reliability of cues 
increases early in ontogeny, we observe such a pattern of increased trait repeatability. Trait 
repeatability develops earlier in ontogeny the earlier organisms have access to reliable cues. 

Research on animal personality includes a focus on the repeatability of phenotypic 
traits across an organism’s lifetime (Sih et al., 2004). The typical pattern in this literature 
is that the repeatability of phenotypic traits increases across ontogeny in a variety of 
species, including humans (Fraley & Roberts, 2005; Réale & Dingemanse, 2012; Sih et al., 
2004). However, not all studies find this pattern. Wuerz and Krüger (2015), for example, 
observed large variation in repeatability across different traits and life stages in Zebra 
finches. Some traits showed no repeatability, while others were only repeatable in some 
portions of ontogeny. In some cases repeatability even decreased across life stages. 
Although in our model trait repeatability usually increases, we do find, for instance, that 
with informative prior distributions (0.7 or 0.9) and increasing or triangular (first increasing, 
then decreasing) cue reliabilities, trait repeatability might decrease in mid-ontogeny rather 
than monotonically increase across ontogeny. Our model thus suggests hypotheses about 
the selection pressures that can result in the more common pattern of increasing trait 
repeatability and in the less common pattern of decreasing trait repeatability.

Results are robust to study paradigm 
When applying different paradigms to quantify phenotypic plasticity, we only 

observed changes in the overall magnitude of plasticity but no qualitative changes in the 
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patterns of sensitive periods across ontogeny. We found greater magnitudes of plasticity 
across ontogeny when simulated twins were exposed to drastically different cues during 
their separation. Although we do not imply that our model findings are readily applicable 
to empirical studies of phenotypic plasticity, we do think that they raise two empirical 
questions that are surely worth exploring: first, whether patterns of plasticity observed in 
empirical studies using different experimental manipulations are comparable; and second, 
whether plasticity is larger and easier to detect in empirical studies using more extreme 
manipulations of individuals’ experiences. As a first step, studies might compare trajectories 
in plasticity derived from different study paradigms in the same species and for the same 
trait of interest. 

Sensitive periods depend on information and phenotypic state
Mid-ontogeny sensitive periods only emerge when the state of organisms includes 

both posteriors as well as phenotypes, not when state only includes posteriors, if plasticity 
is measured at the end of ontogeny. However, it is unknown to what extent this finding 
depends on our specific model assumptions. Thus, an open question is whether the 
inclusion of phenotypic states is generally, across models of sensitive periods, required for 
the evolution of mid-ontogeny sensitive periods.  

Future work could systematically compare outcomes from posterior-only and 
phenotype-and-posterior models across different study paradigms (e.g. measuring plasticity 
at different time points) and model assumptions (e.g. fixed or varying cue reliabilities, stable 
or fluctuating environments) to study whether the inclusion of phenotypic states is necessary 
for sensitive periods to be favored in later developmental stages. We have made a small step 
in this direction by comparing both kinds of models, when differences in posteriors and 
phenotypes between simulated twins are measured right after their separation, rather than 
at the end of ontogeny (Appendix 1, Figure A1.4). This measure quantifies the immediate 
phenotypic effects of the experimental manipulation. In that scenario, we find mid-ontogeny 
sensitive periods for both a posterior-only and a phenotype-and-posterior model. 

Limitations and future directions 
We first discuss two specific limitations of our model and then two broader limitations 

of this class of models. We also suggest future directions that can address some of these 
limitations. 

First, in our model the environment remains stable within an individual’s lifetime. 
Whether this assumption is plausible for a given species depends on its generation time 
relative to the rate of environmental change (Botero et al., 2014). For long-lived organisms, 
it is less likely that the environment remains stable throughout their lifetime (Nettle et al., 
2013). Also, in a seasonally changing environment, natural selection might increase plasticity 
at those times when learning and development, or changes in behavior, might enhance 
fitness. For instance, seasonally breeding adult songbirds exhibit seasonal plasticity in 
song behavior and the associated brain regions (Tramontin & Brenowitz, 2000). Our model 
assumes a stable environment throughout the organism’s lifespan and so is not designed to 
capture such phenomena. 
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Second, we constrained ontogeny to a fixed time horizon. In nature, however, different 
individuals of the same species might mature at different times as a result of phenotypic 
plasticity or other processes. In our model, the duration of ontogeny is fixed and fitness is 
accrued at the end of ontogeny. Plasticity might terminate towards the end of ontogeny, 
because the remaining time is too short to revise estimates and switch developmental 
trajectories. Future modeling might explore the evolution of sensitive periods when the time 
horizon is uncertain (e.g. in each time period, there is some fixed or increasing probability of 
extrinsic mortality; Mangel & Clark, 2019). 

Third, models like ours are agnostic about mechanism. They exclusively consider the 
impact of experience on phenotype (Frankenhuis & Walasek, 2020). As a consequence, such 
models cannot be used to make predictions about the physiological processes that guide 
changes in plasticity across ontogeny. Nonetheless, models can help focus research efforts 
on hypotheses about mechanisms that produce the patterns generated by qualitative 
models that themselves do not incorporate mechanism.

Fourth, in models like ours the environmental state is typically the only unknown 
quantity and organisms know how to optimally respond to it. Organisms learn about the state 
of their environment based on cues and know the optimal developmental decision given 
their current state. However, real organisms might need to learn about other environmental 
quantities, such as the reliability of cues, or about the optimal adaptive response to different 
states. A large body of research on reversal learning shows that organisms are capable to 
infer the reliability of cues in nature (Izquierdo et al., 2017). Trout, for example, learn to 
recognize the sight or smell of potential predators (Behrens et al., 2007; Horn et al., 2019). 
When studying phenotypic plasticity in cases where the optimal response is known to the 
organism, we study so-called ‘switch-like’ plasticity (Frankenhuis, Panchanathan, et al., 
2019; Snell-Rood, 2012). This captures a variety of traits and species. The development of 
defensive armor in Daphnia in response to chemical predator cues is a well-known example 
(Agrawal et al., 1999). However, in other cases organisms learn to respond adaptively via 
trial-and-error. For example, the circulatory, nervous, and immune systems are able to learn 
some adaptive responses from feedback (Snell-Rood, 2012). Natural selection has, in these 
cases, equipped organisms with the ability to learn the adaptive response based on trial-
and-error (i.e. developmental selection) (Frankenhuis, Panchanathan, et al., 2019; Snell-
Rood, 2012).

Future models of the evolution of sensitive periods might vary the environmental 
state within the lifetime of an organism, explore the consequences of a probabilistic 
time horizon on the cessation of ontogeny, or integrate known proximate mechanisms 
(Frankenhuis, Panchanathan, et al., 2019; Kacelnik, 2012; McNamara & Houston, 2009; 
Taborsky et al., 2021; Trimmer et al., 2012). Incorporating additional learning mechanisms, 
such as trial-and-error, represents another interesting future direction that might make 
models like ours more relevant to empirical studies of phenotypic plasticity. Specifically, 
organisms might learn about the reliability of cues or the adaptive response to different 
states. Reinforcement learning models are promising tools to approach both types of 
learning problems (Frankenhuis, Panchanathan, et al., 2019). 
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Conclusion 

By showing that sensitive periods can be favored by natural selection beyond early 
life if the reliability of cues increases across ontogeny, our model contributes to a growing 
set of models exploring the selection pressures shaping the evolution of sensitive periods in 
development. Together, this family of models has the potential to develop into an integrative 
theoretical framework of the evolution and development of sensitive periods, which is 
firmly anchored in a classic and well-developed body of theory exploring the evolution of 
phenotypic plasticity more generally.
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4.0 Abstract

Sensitive periods, in which the impact of experience on phenotype is larger than in other 
periods, exist in all classes of organisms, yet little is known about their evolution. Recent 
mathematical modeling has explored the conditions in which natural selection favors 
sensitive periods. These models have assumed that the environment is stable across 
ontogeny or that organisms can develop phenotypes instantaneously at any age. Neither 
assumption generally holds. Here, we present a model in which organisms gradually tailor 
their phenotypes to an environment that fluctuates across ontogeny, while receiving cost-
free, imperfect cues to the current environmental state. We vary the rate of environmental 
change, the reliability of cues, and the duration of adulthood relative to ontogeny. We use 
stochastic dynamic programming to compute optimal policies. From these policies, we 
simulate levels of plasticity across ontogeny and obtain mature phenotypes. Our results 
show that sensitive periods can occur at the onset, midway through, and even towards the 
end of ontogeny. In contrast to models assuming stable environments, organisms always 
retain residual plasticity late in ontogeny. We conclude that critical periods, after which 
plasticity is zero, are unlikely to be favored in environments that fluctuate across ontogeny. 
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4.1 Introduction

Phenotypic plasticity, the capacity of a single genotype to produce multiple 
phenotypes depending on environmental and somatic conditions, is widespread in nature 
(Nettle & Bateson, 2015; Stearns, 1989; West-Eberhard, 2003). There is well-established 
theory exploring the conditions in which phenotypic plasticity is favored by natural selection 
over non-plastic development. This work has provided valuable insights (for review, see Snell-
Rood & Steck, 2019). For instance, plasticity is likely to be favored when the environment 
changes between generations at a rate too fast for genetic evolution to track, but slowly 
enough within generations for organisms to benefit from using early experience to guide 
phenotypic development (Botero et al., 2015; Snell-Rood & Steck, 2019; Stephens, 1991). 
However, this work has not focused on the question how natural selection shapes changes 
in plasticity across ontogeny for different species, individuals, and traits. 

Modelling sensitive periods
Recently, mathematical models have been used to explore how natural selection 

shapes sensitive periods, i.e., time periods or life stages during which the impact of 
experience on phenotypic development is greater than at other times or stages (reviewed 
in Fawcett & Frankenhuis, 2015; Frankenhuis & Fraley, 2017; Frankenhuis & Walasek, 
2020). In these models, organisms typically begin ontogeny uncertain about the state of 
their environment and gradually reduce uncertainty by sampling environmental cues. 
As a result, plasticity is typically highest at the onset of ontogeny and gradually declines. 
These models have mainly focused on stable environments across ontogeny (English et al., 
2016; Frankenhuis & Panchanathan, 2011b; Panchanathan & Frankenhuis, 2016; Stamps & 
Krishnan, 2014a, 2014b, 2017; for an exception, see Fischer et al., 2014). However, many 
species and populations experience environmental fluctuations within generations as well 
(Botero et al., 2015). Little is known about optimal levels of plasticity across ontogeny in 
such conditions. For instance, when conditions fluctuate across ontogeny, plasticity may be 
prolonged to enable phenotypic adjustments across all of ontogeny (English et al., 2016; 
Panchanathan & Frankenhuis, 2016; Pascalis et al., 2020). Such a pattern would differ from 
that observed in models of stable environments, which often favor critical periods, where 
plasticity drops to zero (Pascalis et al., 2014, 2020). 

Sensitive periods in fluctuating conditions
We know of only one model that has explored the evolution of sensitive periods in 

an ontogenetically fluctuating environment. Fischer et al. (2014) modelled an environment 
that fluctuates stochastically between two discrete states. Organisms develop initial 
phenotypes at the onset of ontogeny based on the long-term distribution of environments. 
In subsequent time periods, organisms sample imperfect cues to the current environmental 
state and adjust their phenotypes to maximize survival and reproduction across ontogeny. 
As with models of stable conditions, in this model plasticity declines with age. However, in 
contrast to those models, the highest level of plasticity (‘peak-plasticity’) does not always 
occur at the onset of ontogeny. In some conditions, organisms delay phenotypic adjustment 
until uncertainty has been sufficiently reduced, resulting in peak-plasticity shortly after the 
onset of ontogeny.
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The model by Fischer et al. (2014) offered a crucial step forward but also has two 
limitations. First, it assumes that any phenotype can develop at any age within a single 
time period. This assumption does not apply when phenotypes are gradually constructed 
or cannot be reversed. In such cases, the current phenotypic state constrains the range of 
phenotypes available in the future. Second, the Fischer et al. model measures plasticity 
as phenotypic change directly following a cue. However, there are other possibilities that 
afford different insights (Frankenhuis & Walasek, 2020). For example, we can explore the 
effects of cues on developmental trajectories and mature phenotypes (Mueller, 2018), 
matching commonly used empirical designs (Haltigan et al., 2013; Humphreys et al., 2019). 

Our contribution
Here, we present a model in which traits develop incrementally in an environment 

that fluctuates across ontogeny, exploring how cues shape plasticity across ontogeny and 
adult phenotypes. Organisms that gradually tailor phenotypes cannot instantaneously 
develop any phenotype at any time. Such incremental development is widespread in 
nature. For instance, plants gradually develop leaf morphology, such as area, thickness, 
and dissection, in response to light intensity, humidity, and temperature (Callahan et al., 
1997; Maugarny-Calès & Laufs, 2018; Schlichting, 1986). Animals develop morphological 
defenses, such as protective armor, increased body size, or longer tails, as well as changes in 
coloration, in response to predator cues (Agrawal et al., 1999). In humans, the development 
of motor skills appears stepwise if measures are taken across weeks or months. However, 
this pattern reflects smaller incremental changes, which are visible once measures are taken 
frequently on shorter time scales (Adolph et al., 2008). 

In our model, the environment varies stochastically between two discrete states. 
Organisms incrementally construct phenotypes while sampling cost-free, imperfect cues 
to the current conditions. Once phenotypic increments have developed, they cannot be 
undone. We use stochastic dynamic programming to compute optimal policies for a range 
of environments, varying the rate of environmental fluctuations, the reliability of cues, and 
how long adulthood lasts relative to ontogeny. These policies specify the optimal decision for 
each possible state of an organism, depending on its current phenotype and cues sampled. 
We then simulate populations of organisms following the optimal policy. Finally, we use 
experimental designs, matching those used in empirical studies, to quantify plasticity across 
ontogeny and distributions of mature phenotypes. 

4.2 Model

Evolutionary ecology
The environment consists of an infinite number of discrete and nonoverlapping 

patches. Each patch can be in one of two states, E0 or E1. From one time period to the 
next, the state of each patch switches stochastically between E0 and E1 with transition 
probabilities, P(E0,t|E1, t-1) and P(E1,t|E0, t-1) where t denotes the current time period. For 
example, a patch might start out rich in one food type and switch to a different food type 
(e.g., seeds or fruits). We use a Markov process to fully describe the transitions between 
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states. As the per time period transition probabilities are fixed, we abbreviate P(E0,t|E1, t-1) 
and P(E1,t|E0, t-1) with P(E0|E1) and P(E1|E0).

We explore symmetric, P(E0|E1) = P(E1|E0) and asymmetric transition probabilities, 
P(E0|E1) ≠ P(E1|E0). We also vary how likely transitions occur, ranging from 0.1 to 0.45 
(positive autocorrelation). At the low end, the environment is relatively ‘stable’: an 
environmental switch is unlikely to occur. At the high end, the environment is ‘unstable’: a 
switch is almost as likely as no switch. We do not explore transition probabilities equal to or 
larger than 0.5 (negative autocorrelation).

Phenotypic development
Organisms are born, randomly disperse into a new patch, develop to maturity in the 

new patch, reproduce, and die. Ontogeny, Tont, is fixed at 10 discrete and non-overlapping 
time periods. We obtain similar qualitative results for a larger number of time periods 
(Appendix 2 Figures A2.1–A2.4). We vary the length of adulthood (Tadult  = 1, 5, and 20 time 
periods) to explore different ratios of adulthood to ontogeny (see Appendix 2, Figures A2.5–
A2.9 for an adult lifespan of 10 time periods). Thus, time runs from t = 0 (birth) until the end 
of the reproductive phase Tend, such that Tend = Tont + Tadult. 

For each environmental state, there is a corresponding optimal phenotype: P0 for 
E0 (e.g., specialized for foraging seeds) and P1 for E1 (e.g., specialized for foraging fruits). 
These phenotypes represent two different traits, rather than a single trait that increases or 
decreases. In other words, phenotypes are not arrayed along a single dimension, but along 
two independent dimensions. Changes in one trait are independent of changes in the other 
trait. Organisms learn about their environment by receiving cost-free, imperfect cues. After 
each cue, organisms have three options: specialize one increment towards P0, specialize one 
increment towards P1, or wait and forgo specialization. Once an increment has developed, it 
cannot be undone, yet organisms may always switch developmental trajectories. 

In adulthood, organisms experience the same transition probabilities as during 
ontogeny, but cannot adjust phenotypes. Instead, they accrue fitness depending on the 
phenotype-environment fit and reproduce proportional to fitness. In this model, fitness is 
only a function of fertility. We consider the effects of viability selection in the Discussion 
section. 

Learning about the environment
The organism is adapted to the transition probabilities between states, as well as the 

long-term probability distribution over states (i.e., the stationary distribution of the Markov 
process), denoted by: π(E0) = 
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 and π(E1) = 1 - π(E0). This distribution serves 
as an organism’s evolutionary prior of being in each of the two environmental states at the 
onset of ontogeny (Stamps & Frankenhuis, 2016). If transitions towards the seed-rich state 
are more likely than transitions towards the fruit-rich state, i.e., P(E1|E0) > P(E0|E1), the 
long-term probability of being in the seed-rich state is higher than that of being in the fruit-
rich state, i.e., π(E1) > π(E0). Symmetric transition probabilities produce a uniform stationary 
distribution, i.e., π(E0) = π(E1) - 0.5, while asymmetric transition probabilities produce a 
non-uniform stationary distribution, where π(E0) > π(E1) if P(E0|E1) > P(E1|E0). 
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In each time period, organisms sample a cost-free, imperfect cue to the current state 
of the environment and update their estimates according to Bayes’ theorem (Dall et al., 2015; 
McNamara et al., 2006; Stamps & Krishnan, 2014a; Trimmer et al., 2011). The cue reliability 
is defined by the conditional probability of sampling the correct cue in the corresponding 
state, P(C0|E0) = P(C1|E1). The probability of sampling an incorrect cue corresponds to 
P(C1|E0) = 1 - P(C0|E0) and P(C0|E1) = 1 - P(C1|E1), respectively. We vary the cue reliability 
from low (0.55) to high (0.95). The higher the cue reliability, the better organisms can adjust 
to the current state of the environment and exploit positive autocorrelation to adjust to 
future states of the environment. 

Fitness during adulthood 
Organisms who wait and forgo specialization across all of ontogeny attain a baseline 

fitness. Any developed specializations lead to increases or decreases from this baseline. 
During each time period in adulthood, fitness depends on the current phenotype-
environment match. Total fitness corresponds to the sum of the fitness scores across 
adulthood. 

We consider phenotypic specializations matching the environmental state as ‘correct’ 
and specializations towards the other state as ‘incorrect’. We assume that correct phenotypic 
specializations increase fitness and incorrect ones decrease it relative to baseline fitness 
(Innes-Gold et al., 2019). The fitness in each period of adulthood is calculated by summing 
the marginal rewards for correct specializations, marginal penalties for incorrect ones, and 
baseline fitness. We explore three mappings between phenotypes and marginal fitness 
rewards and penalties (linear, increasing, and diminishing) and three penalty weights (0.5, 1, 
and 2) (Frankenhuis & Panchanathan, 2011b; Panchanathan & Frankenhuis, 2016; Walasek 
et al., 2021). The specific combination of mappings and penalty weight determines how 
organisms accrue fitness. Returning to our example of seed and fruit specialization, imagine 
the following two organisms: organism A has developed equal numbers of specializations 
for both states, while organism B has waited throughout ontogeny, developing zero 
specializations for either state. If we assume linear reward and penalty functions and a 
penalty weight of 1, then both organisms accrue zero fitness. If, instead, we assume a higher 
penalty weight or a diminishing penalty function, then, all else equal, A would attain lower 
fitness than B. With a lower penalty weight or an increasing penalty function, B does better 
than A. In the paper we set the penalty weight to 1 and the reward and penalty mappings to 
linear. We present the other combinations in Appendix 2 (Figures A2.16-A2.21) and address 
them in the Discussion section.

We describe fitness functions and formulas of all mappings in Appendix 2, ‘Dynamic 
programming’. 

Optimal developmental policies 
To obtain optimal policies, we use the posterior estimates across ontogeny to compute 

expected fitness across adulthood. We treat the states of the environment during ontogeny 
as ‘hidden’, unobserved states and sampled cues as ‘observed’ states of a Hidden Markov 
Model. We then apply the forward algorithm to compute the posterior probabilities, P(E0|Dt )  
and P(E1|Dt ) for all possible orderings of sampled cues Dt (Rabiner, 1989). Dt = {x1, x2, ... xt } 
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denotes the sequence of cues until time period t, where x1, x2, and so forth until xt denote 
the cue (C0 or C1) sampled in each time period. We provide the formulas of the forward 
algorithm in Appendix 2, ‘Dynamic programming’. 

In contrast to ontogeny, we model adulthood as a Markov Model with environmental 
states as observed states and no hidden states. The probabilities of starting adulthood in E0 or 
E1 equal the posteriors in the final time period of ontogeny. We compute the probabilities of 
being in each of the two states across adulthood, P(E0) and P(E1), based on these posteriors 
and the transition probabilities. Then we use P(E0) and P(E1) to compute expected fitness 
across adulthood (Appendix 2, ‘Dynamic programming’).

Finally, we compute optimal developmental policies using stochastic dynamic 
programming via backwards induction (Appendix 2, ‘Dynamic programming’). The algorithm 
uses the posterior probabilities at the end of ontogeny and the expected fitness across 
adulthood as a starting point to determine the optimal decision in the final time period 
and then works its way backward in time. All code is written in Python 2.7. and available on 
GitHub (https://github.com/Nicole-Walasek/SensitivePeriodsInFluctuatingEnvironments). 

4.3 Analysis

From transition probabilities to autocorrelation
Empirical studies often use temporal autocorrelation to measure environmental 

change. To facilitate comparisons between our model and such studies, we compute 
autocorrelation values from transition probabilities (Appendix 2, ‘From transition probabilities 
to autocorrelations’). Higher transition probabilities produce lower autocorrelations. 

The magnitude of the difference between P(E0|E1) and P(E1|E0), the ‘asymmetry’, 
also affects the autocorrelation. Suppose transitions to one state are more likely than to 
the other, for example, P(E0|E1) = 0.1 and P(E1|E0) = 0.2. In this case, the asymmetry is 
0.1. If the patch starts in E1, transitions are initially quite unlikely. However, once the state 
switches, the probability of another switch is higher. Overall, there would be more switches 
and lower autocorrelation compared to a scenario in which P(E0|E1) = P(E1|E0) = 0.1. Higher 
asymmetries thus imply a smaller range of autocorrelations. Different sets of transition 
probabilities and asymmetries can approximate the same autocorrelation (see Appendix 2 
Figure A2.10).

We have explored different asymmetries (i.e., 0.02, 0.05, 0.1, and 0.2, see Appendix 
2, Figures A2.11 – A2.12). In the main text, we depict only autocorrelations characterized by 
an asymmetry of 0.1. This value can reveal the qualitative differences between symmetric 
and asymmetric transition probabilities, while still covering a large range of autocorrelations. 
Specifically, we set P(E0|E1) - P(E1|E0) = 0.1, so E0 is the more likely environmental state. 
For both symmetric and asymmetric cases, we present results for values of P(E0|E1) and 
P(E1|E0) that approximate autocorrelations of 0.2, 0.5 and 0.8. 
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Quantifying plasticity 
We simulate experimental designs resembling empirical adoption studies. These 

studies compare mature organisms, often twins or siblings, separated at a particular point 
during ontogeny for a specific duration. Researchers investigate how the age at which 
organisms are separated (and possibly later reunited), and the conditions during separation, 
determine variation in mature phenotypes. We have previously shown that different 
manipulations of experiences during separation – for instance, receiving reciprocal opposite 
cues or cues from a different patch, and temporary or permanent separations – yield 
similar qualitative patterns (Walasek et al., 2021). These patterns are most pronounced for 
reciprocal opposite cues and permanent separation, as experience is maximally divergent 
for a longer time. Therefore, we analyze only this manipulation here. 

We use the optimal policy to simulate developmental trajectories. The level of 
plasticity corresponds to the extent to which phenotypic development depends on cues 
during ontogeny. We compute plasticity for each t ϵ {1, Tont}. We start by simulating pairs 
of clones, following the optimal policy. Organisms start in either environment, E0 or E1. We 
simulate all possible sequences of cues, resulting in one pair of clones per sequence. Each 
pair of clones receives a weight according to the likelihood of its particular cue sequence. 

Clones develop together until time period t, experiencing the same sequence of cues 
and making the same phenotypic decisions, resulting in identical phenotypes. At this point, 
the clones are separated, with one (the focal) remaining in the original patch and the other 
(the copy) developing in a mirror patch. The sequence of environmental states in the mirror 
patch is the same as in the original patch. However, the cues in the mirror patch are opposite 
those in the original patch. Whenever the focal individual samples C0, the copy samples 
C1, and vice versa. Focal-and-copy pairs continue development until maturation. Mature 
phenotypes are described by the number of time periods specialized towards P0 and P1. 
Together with the number of time periods waited, these numbers sum to Tont  = 10. 

At the end of ontogeny, we compute the weighted average Euclidean distance 
between the two-dimensional phenotype vectors across all simulated pairs of clones. 
To control for the number of time periods the focal and copy have developed together, 
we normalize this measure by dividing the weighted average by the maximally attainable 
Euclidean distance, resulting in a range from 0 to 1. We show a schematic overview of our 
adoption study paradigm in Appendix 2 (Figure E2.13).

4.4 Results 

First, we present the optimal phenotypic decisions across ontogeny. Next, we present 
the levels of plasticity resulting from these policies. We present the linear reward and linear 
penalty combinations (penalty weight of 1) below and all other combinations in SM 7 of 
the online supplements. Additionally, we show distributions of mature phenotypes and 
compare the terminal fitness of the optimal policies against two non-plastic strategies in SM 
7 of the online supplements. 
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Optimal decisions across ontogeny
All organisms start out with the same estimate of the environmental state. These 

estimates diverge across ontogeny based on individual variation in sampled cues and then 
converge in adulthood towards the stationary distribution after learning stops (Appendix 
2, Figure A2.13). While adult organisms no longer sample cues, their estimates of the 
environmental state continue to change, converging towards the stationary distribution. 
If adulthood is long enough, the estimates across individuals fully converge (Appendix 2, 
Figure A2.13). 

With symmetric transition probabilities, the optimal developmental decision is to 
specialize toward the environment with the higher posterior in every time period (Figure 4.1 
and Appendix 2, A2.14). This result follows from two facts. First, the stationary distribution 
implies that, on average, organisms will encounter each environmental state equally often. 
Second, organisms never change their estimates about which state is more likely during 
adulthood (Appendix 2, Figure A2.13). This means that, if an organism estimates that E0 
is the more likely state at the onset of adulthood, it will continue to do so regardless of 
the duration of adulthood. Taken together, organisms should specialize according to their 
posteriors regardless of the adult lifespan.

With asymmetric transition probabilities, the optimal decision depends on the relative 
length of adulthood, the cue reliability, and the autocorrelation between environmental 
states (Figure 4.1 and Appendix 2, A2.15). When adulthood is long relative to ontogeny (20 
time periods) or the cue reliability is low (0.55), organisms always specialize towards E0, 
the more likely state in the stationary distribution. With a long adult lifespan, organisms 
will more often encounter E0 during adulthood and specialize accordingly. When cue 
reliability is poor, organisms remain uncertain about the environmental state when entering 
adulthood and so choose the more likely state (Figure 4.1). When adulthood is short relative 
to ontogeny (1 or 5 time periods), there is a high probability that the adult environment 
differs from the most likely state in the stationary distribution (Appendix 2, Figure A2.13). 
That is, a substantial proportion of organisms – though never, the majority – spends more 
time in E1. The autocorrelation and cue reliability determine when during ontogeny, and 
with which posteriors, organisms start specializing toward the less likely state. The higher 
the autocorrelation, the sooner organisms start specializing towards E1 because they can 
better anticipate the adult environment. With reliable cues (0.75 and 0.95) organisms 
achieve more extreme posterior estimates and are more likely to specialize based on their 
posteriors at the end of ontogeny (Figure 4.1 and Appendix 2, A2.15). 
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Figure 4.1 Optimal policies. Optimal policies are shown for linear rewards and linear penalties (penalty weight of 
1), Tadult = 5, and symmetric (left panel) and asymmetric (right panel) transition probabilities. Within each panel, 
columns indicate different levels of autocorrelation and rows indicate different cue reliabilities. Each combination 
of asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. The vertical axis displays 
posterior estimates of being in E1 and the horizontal axis displays time during ontogeny. At the onset of ontogeny, 
all organisms start with a prior estimate of being in E1 according to the stationary distribution (large grey circles). 
Throughout ontogeny organisms sample cues and update their posteriors, resulting in the colored circles. Colors 
indicate the optimal, fitness-maximizing phenotypic decision in each state. Pies highlight cases in which organisms 
with the same posterior estimates (but different phenotypic states) make different phenotypic decisions. Black 
corresponds to waiting (not visible here because organisms never choose to wait), blue to specializing towards P1, 
red to specializing towards P0. The area of a circle (or pie piece) is proportional to the probability of reaching each 
state. In each time period, these probabilities sum to 1. Beige lines between states depict possible developmental 
trajectories.

Optimal levels of plasticity across ontogeny 
Fixed, non-plastic policies are favored only under a narrow range of conditions. When 

plasticity is favored, it is retained until the end of ontogeny, though the timing of peak-
plasticity varies. With low autocorrelation, plasticity peaks towards the end of ontogeny. 
With high autocorrelation, the timing of sensitive periods depends upon the cue reliability, 
with plasticity peaking at the onset, halfway through, or towards the end of ontogeny. We 
elaborate below.

Plasticity is not favored when one environment is more likely and adulthood is long or 
cues are unreliable. 

All else equal, asymmetric transition probabilities reduce the scope for plasticity. 
After all, with one state more likely than the other, the organism faces less uncertainty and 
will rely less on plasticity and more on its prior. Asymmetric transition probabilities coupled 
together with long relative adulthoods result in low plasticity, or even no plasticity, across 
ontogeny (Figure 4.2). Longer adult lifespans allow organisms to rely on the stationary 
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distribution to adjust to their adult environment, reducing the need for plasticity. The 
stationary distribution implies that, on average, organisms will encounter the more likely 
environmental state more often than the less likely state (Appendix 2, Figure A2.13). 
Asymmetric transition probabilities coupled together with unreliable cues (0.55) favor zero 
plasticity across ontogeny (Figure 4.2). To avoid phenotype-environment mismatches due to 
unreliable cues, organisms use their priors at the onset of ontogeny to specialize towards 
the more likely environmental state. With symmetric transition probabilities, shorter adult 
lifespans, or reliable cues, plasticity is favored across ontogeny even when the environment 
fluctuates frequently (i.e., autocorrelation equals 0.2). 

Environmental fluctuations favor sensitive but not critical periods. 
Unlike previous models that assume stable environments (Frankenhuis & 

Panchanathan, 2011b; Panchanathan & Frankenhuis, 2016; Walasek et al., 2021), we 
find that ‘critical periods’ in which plasticity drops to zero are never favored. When the 
environment fluctuates, organisms always benefit from adjusting their phenotypes—even 
late into ontogeny. The exact level of plasticity at the end of ontogeny depends on the adult 
lifespan and the autocorrelation.

Short adult lifespans (1 time period) favor higher levels of plasticity at the end of 
ontogeny compared to longer adult lifespans (5 or 20 time periods) (Figure 4.2). When 
adulthood is short organisms rely on the most recent cues prior to the onset of adulthood. 
When adulthood is moderately long (5 time periods), organisms rely on a combination of 
recent cues and the prior (Appendix 2, Figures A2.14-A2.15). Only those organisms with 
highly certain posterior estimates specialize towards the less likely state. Those with less 
certainty specialize towards the more likely state in the stationary distribution. When the 
adult lifespan is long, natural selection favors non-plastic strategies. 

Lower autocorrelations typically result in higher levels of plasticity at the end of 
ontogeny (Figure 4.2). The more frequent environmental fluctuations are, the more cues 
can shift posterior estimates throughout all of ontogeny, increasing the scope for plasticity 
(Figure 4.1). When the autocorrelation is high (0.8), organisms are less likely to attend to 
cues towards the end of ontogeny, resulting in lower levels of end-of-ontogeny plasticity. 
A relatively stable environment allows them to reduce uncertainty about their adult 
environment earlier during ontogeny. However, when cues are highly reliable (0.95) and 
the adult lifespan is short (1 time period), the chance of sampling incorrect cues is so low 
that the expected benefits from additional information about the environment outweigh 
potential mismatch costs. Under these conditions, end-of-ontogeny levels of plasticity can 
match those of ecologies with lower autocorrelations.

The timing of sensitive periods across ontogeny
Sensitive periods can evolve at the onset of ontogeny when environmental 

fluctuations are rare (autocorrelation 0.8). With symmetric transition probabilities and 
moderately reliable cues (0.75), organisms initially use cues to reduce uncertainty about 
their environment, resulting in a constant level of plasticity over large portions of ontogeny 
(Figure 4.2). However, plasticity declines towards the end as some organisms achieve more 
extreme posterior estimates, and consistently specialize towards one phenotypic target 
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(Figure 4.1). When cue reliability is low (0.55), natural selection favors constant, non-zero 
levels of plasticity across ontogeny. Neither the stationary distribution nor the sampled cues 
provide sufficient information to reduce uncertainty about the state of the environment. 
Organisms remain fairly uncertain, and thus attend to noisy cues across all of ontogeny.

Sensitive periods may evolve halfway through ontogeny when environmental 
fluctuations are rare (autocorrelation 0.8). With asymmetric transition probabilities 
and reliable cues (0.75 or 0.95), organisms specialize early in ontogeny according to the 
stationary distribution, ignoring sampled cues. As ontogeny proceeds, plasticity increases 
because organisms become more uncertain when they sample cues that contradict their 
posteriors. Plasticity peaks when organisms reach states after which they are likely to 
consistently specialize towards one phenotypic target, reducing the scope for plasticity in 
subsequent time periods. When cues are moderately reliable (0.75) and the adult lifespan 
is short (1 time period), organisms may reach such states halfway through ontogeny. Highly 
reliable cues (0.95) increase the probability that organisms start to specialize towards the 
less likely state already halfway through ontogeny (Figure 4.2), for both short and moderate 
adult lifespans (1 or 5 time periods). 

Sensitive periods often evolve towards the end of ontogeny. Frequent environmental 
fluctuations favor sensitive periods towards the end of ontogeny. In such conditions 
(autocorrelations of 0.2 and 0.5), organisms specialize according to the most recent cues 
prior to the onset of adulthood (Figures 4.1-4.2). When environmental fluctuations are rare 
(autocorrelation of 0.8), plasticity sometimes peaks towards the end of ontogeny. When 
the adult lifespan is moderate (5 time periods) and cues are moderately reliable (0.75), 
a small proportion of the population specializes towards the less likely state in later time 
periods, resulting in sensitive periods towards the end of ontogeny. Plasticity may also peak 
at the end of ontogeny when the adult lifespan is short (1 time period) and cues are highly 
reliable (0.95), because organisms always choose to specialize according to cues in the final 
time period (Figures 4.1-4.2). These are also the only conditions in our model that favor 
two peaks in plasticity: one smaller peak halfway through ontogeny and one larger peak 
in the final time period. In the second half of ontogeny, plasticity decreases because many 
organisms are locked into developmental trajectories on which they consistently specialize 
towards the same state. However, to reduce mismatch penalties during a short adulthood, 
organisms always specialize according to the final cue as a form of insurance.
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Figure 4.2 Phenotypic plasti city across ontogeny. Phenotypic plasti city across ontogeny is shown for linear rewards 
and linear penalti es (penalty weight of 1). Columns indicate whether transiti on probabiliti es are symmetric 
or asymmetric and in the latt er case, whether organisms start development in the more (E0) or less likely (E1) 
environmental state. Rows indicate diff erent cue reliabiliti es. Within each panel, we show separate lines for 
diff erent levels of autocorrelati on (indicated by the greyscale) and diff erent adult lifespans (indicated by the line 
type). Each combinati on of asymmetry, autocorrelati on level, and cue reliability results in a unique Markov process. 
For each combinati on of a unique Markov process, starti ng environment and adult lifespan, we conduct Tont = 10
experimental twin studies, one for each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for each possible sequence 
of cues), who follow the opti mal policy and get separated at ti me period t during ontogeny (horizontal axis). We 
compu te phenotypic distance (verti cal axis) as the average, weighted Euclidean distance of all pairs of clones at the 
end of ontogeny and plot it against the ti me of separati on. Phenotypic distance is normalized by dividing it by the 
maximally att ainable Euclidean distance.
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4.5 Discussion

Sensitive periods are more likely to evolve than critical periods 
Unlike in models assuming stable environments, we find that critical periods, in which 

plasticity drops to zero, are never favored. In a fluctuating environment, organisms always 
use cues at the end of ontogeny to reduce uncertainty about their adult environment. 
Combining insights across models, we may expect empirical researchers to observe critical 
periods for traits that have evolved in stable ontogenetic environments and sensitive periods 
for traits that have evolved in fluctuating ontogenetic environments.

Our finding that plasticity always persists at the end of ontogeny is striking for two 
reasons. First, previous work shows that the fitness costs of plasticity may outweigh the 
fitness benefits when organisms need to continuously readjust to fluctuating environmental 
conditions and pay the associated costs (Leung et al., 2020; Pfab et al., 2016; Snell-
Rood & Steck, 2019). Our model assumes no costs to building, maintaining, and running 
the physiological machinery for plasticity; to sampling cues; and to making phenotypic 
adjustments. Our model does, however, assume that plasticity is incremental and 
irreversible, and that there is a cost to phenotype-environment mismatch in adulthood. 
With these assumptions, the level of plasticity at the end of ontogeny is highest when 
adulthood is short and the rate of environmental fluctuations is high. Second, previous 
models exploring the evolution of plasticity in fluctuating environments have assumed that 
developed phenotypes can be undone, allowing organisms to continuously readjust their 
phenotypes to changing conditions (Pfab et al., 2016; Utz et al., 2014). The ability to reverse 
development may reduce phenotype-environment mismatch and thus make plasticity 
across all of ontogeny more viable. In our model, organisms cannot reverse phenotypic 
increments. Developmental trajectories, however, are reversible, such that organisms may 
specialize towards the opposite phenotypic target at any point during ontogeny. This allows 
phenotypic plasticity to be favored and even persist until the end of ontogeny when the 
environment fluctuates frequently. 

A study by Relyea (2003) has shown that tadpoles (Hyla versicolor) – which cannot 
undo developed phenotypes but are able to switch developmental trajectories – retain 
plasticity towards the end of ontogeny in a fluctuating environment. Tadpoles were exposed 
to variation in predation risk across ontogeny and showed the induction of morphological 
defenses, such as greater mass, deeper tails, or shorter bodies, throughout all of ontogeny, 
albeit to a lesser extent at later stages. Relyea did not operationalize reversibility as the 
deconstruction of phenotypic adjustments, but as the relative readjustment of different 
morphological features. For example, if a tadpole developed a deeper tail relative to its 
body size in response to predators and increased body size after predators were later 
removed, this counted as a reversal. Such reversals are similar to the reversibility of 
specialization trajectories in our model. The study showed that reversibility of phenotypic 
inductions was high early in ontogeny and lower later during ontogeny. Our model predicts 
a decline in organisms’ ability to switch between trajectories as ontogeny progresses, when 
environmental fluctuations are rare and cues are moderately reliable. In such conditions, 
the remaining time is too short for organisms to revise estimates. Relyea allowed for a 
switch in predation risk only once during ontogeny. These conditions resemble those of high 
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autocorrelation values in our model, more so than those of low autocorrelation. However, 
we do not know the reliability of predation cues used in the study. Future research could 
replicate the experiment while manipulating the reliability of cues. Our model predicts a 
steep increase in plasticity at the end of ontogeny when cues are highly reliable.

The timing of sensitive periods
We find that sensitive periods typically occur at the end of ontogeny. This finding 

contrasts with results from models of stable environments (English et al., 2016; Frankenhuis 
& Panchanathan, 2011b; Panchanathan & Frankenhuis, 2016; Stamps & Krishnan, 2014a, 
2014b, 2017), as well as the results of one model exploring fluctuating environments (Fischer 
et al., 2014). Our finding indicates that natural selection may heighten sensitivity to cues 
towards the end of ontogeny when the environment changes rapidly and phenotypes develop 
incrementally. Developing organisms then use experiences towards the end of ontogeny to 
adjust phenotypes right before maturity. This makes sense: when the environment fluctuates 
frequently, cues towards the end of ontogeny tend to better predict conditions in adulthood 
than earlier cues. Responses to cues can be behavioral or morphological. Examples of 
greater reliance on cues later during development exist for both. For example, migratory 
bird, bat, and fish species use cues throughout their journey to predict remote conditions 
and adjust their arrival time and destination (Winkler et al., 2014). Often, these animals rely 
the most on cues towards the end of their journey to make such predictions. In bulb mites 
(Rhizoglyphus robini) nutritional conditions during the final ontogenetic stages determine 
whether males mature as ‘fighters’ or ‘scramblers’ (Smallegange, 2011). The extent to which 
these patterns depend on the rate of environmental change, the reliability of cues, or the 
duration of adulthood relative to ontogeny remains to be explored. Experimental evolution 
studies of bulb mites and other insect species can be used to explore different parameter 
combinations and test predictions from models like ours (English & Barreaux, 2020). 

While sensitive periods often emerge at the end of ontogeny in a fluctuating 
environment, they may occur midway through ontogeny when autocorrelation is high. 
Models of stable environments have obtained this same result (Stamps & Krishnan, 2017; 
Walasek et al., 2021), and so did Fischer et al.’s model of fluctuating environments (Fischer 
et al., 2014). These sets of models produce this pattern, at least in part, for the same reason: 
the initial discrepancy between posteriors and cues increases uncertainty, which increases 
plasticity early in ontogeny, before plasticity declines when later cues reduce uncertainty. 
Our model also produces sensitive periods midway through ontogeny, but for different 
reasons than those models. Fischer et al. (2014) and Stamps & Krishnan (2017) assume that 
organisms start development with specialized phenotypes and that specializations are fully 
reversible. Under these conditions, sensitive periods may arise midway through ontogeny 
because organisms first sample multiple cues to reduce uncertainty, before changing their 
specialized phenotypes. This effect may be strongest when phenotypic adjustments are 
costly, as in Fischer et al.’s (2014) model. Complete reversibility further allows organisms 
to delay developing specializations because the scope for phenotypic adjustment is not 
constrained by the duration of ontogeny. In the current model, and in a previous model of 
stable environments with variation in the cue reliability across ontogeny (Walasek et al., 
2021), sensitive periods midway through ontogeny are favored even if organisms do not 
start out with specialized phenotypes that are costly to switch away from and adjustments 
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are irreversible. Thus, sensitive periods midway through ontogeny may evolve across a 
range of environments and life histories. 

Long adult lifespans disfavor plasticity 
When adulthood is short relative to ontogeny, high levels of plasticity are favored 

across ontogeny. By contrast, when adulthood is long, organisms rely less on (or ignore) 
their experiences and specialize towards the more likely state in the stationary distribution. 
These findings may appear at odds with those of a co-evolutionary model by Ratikainen & 
Kokko (Ratikainen & Kokko, 2019) showing that longevity favors plasticity and vice versa. 
However, this difference can be understood in light of assumptions about plasticity in 
adulthood. Our model assumes that phenotypic development is limited to ontogeny. Their 
model allows adults to continue tailoring their phenotypes. Thus, in their model (but not 
in ours), long-lived organisms can do better than adapting to the stationary distribution. 
Combining both models, we may predict that longevity is associated with higher levels of 
plasticity when adult phenotypes are malleable, and with lower levels of plasticity when 
adult phenotypes are fixed. Cross-species comparisons have shown that higher levels of 
plasticity are associated with longer lifespans in some groups of animals (Gopnik, 2020; 
Sol et al., 2016), but with shorter lifespans in other groups of animals (Sowersby et al., 
2021). Future work may test whether the malleability of adult phenotypes moderates these 
opposite patterns of association. 

Limitations and future directions
Our model assumes only two environmental states. Another possibility would be to 

assume a larger number of discrete states or a continuum of states. This would make it 
possible to independently manipulate the means and variances of both the prior distribution 
and the reliability of cues. Doing so might influence the findings from our model. However, 
previous models of stable environments that incorporate a continuum of environmental 
states (Stamps & Krishnan, 2014b, 2017) have found similar qualitative patterns as those 
assuming two discrete states (Frankenhuis & Panchanathan, 2011b; Panchanathan & 
Frankenhuis, 2016). Future modelling could explore whether our results replicate when 
increasing the number environmental states. 

In our model, fitness is only a function of fertility. Other state-dependent models 
assume that fitness depends on fertility and mortality (Fischer et al., 2014; Houston et al., 
1988). Our model could be extended to include mortality. Mortality would be a function of 
phenotype-environment match during ontogeny, adulthood, or both, depending on how 
the trait influences mortality across these stages. 

In our model, fitness is proportional to the difference between correct and incorrect 
specializations. We instantiate this through specific reward-penalty mappings and penalty 
weights. In the main text, we set the penalty weight to 1, implying that rewards and penalties 
contribute equally to fitness. In Appendix 2, we show that penalty weights of 0.5 and 2 
yield the same qualitative patterns, but there is one difference: when the penalty weight 
is 2, organisms sometimes wait to reduce phenotype-environment mismatch. Though we 
have explored a wide parameter range, future work could investigate a more general model 
where fitness is an arbitrary function of phenotype. 
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Our model assumes that organisms ‘know’ (i.e., have evolutionarily adapted to) the 
cue reliability, autocorrelation, and the durations of ontogeny and adulthood, because these 
parameters were fixed across generations. However, if these parameters were variable, 
organisms may estimate them based on experience. Future modelling could explore a 
scenario in which the cue reliability, autocorrelation, and the duration of life stages vary 
between generations, but are stable within generations. For instance, an organism might be 
born into one of several patches, each of which has its own cue reliability, autocorrelation, 
or duration of life stages. Future modelling could also explore a scenario in which these 
parameters vary within generations as well. For instance, the weather might change at 
different rates in different seasons. Under these conditions, organisms may need to learn 
the pattern of change of environmental parameters across their lifespan (Frankenhuis, 
Panchanathan, et al., 2019). In experimental studies, humans, non-human primates, and 
rodents are able to learn the cue reliability and adaptively adjust their behavior (Behrens 
et al., 2007; Izquierdo et al., 2017). It would be interesting to see whether organisms that 
are uncertain about multiple parameters retain higher end-of-ontogeny levels of plasticity, 
as we see in the current model. Organisms may develop sensitive periods late in ontogeny, 
if conditions favor attaining confident estimates of environmental parameters prior to 
committing to phenotypic specialization.

As noted, animals and plants may experience fluctuations in different environmental 
statistics during their lifetimes (Grosbois et al., 2008). For example, the reliability of cues 
varies across ontogeny for a variety of aquatic species, such as larval mosquitos (Culex 
restuans), common roaches (Rutilus rutilus), fathead minnows (Pimephales promelas), and 
goldfish (Carassius auratus) (Ferrari et al., 2010). However, for many species and traits, 
there is little information about the values of environmental statistics across ontogeny 
(Frankenhuis, Nettle, et al., 2019). As a future direction, we envision a repository of 
environmental statistics across ontogeny (e.g., autocorrelation, cue reliability) for a range 
of species and populations. Such a repository can benefit empirical researchers who study 
how environmental conditions shape development, as well as theoreticians modelling the 
evolution of developmental phenomena, such as sensitive and critical periods. For instance, 
it would allow modelers to make informed decisions about which parameters to fix or vary 
across ontogeny, depending on their research questions about groups of organisms (e.g., 
taxa, clades) or particular species or populations. Modelers and empirical researchers 
may use the repository to focus on those rates of variation that are most relevant for a 
given taxonomic group or species when developing theory and experiments. In this way, 
a repository of environmental statistics has the potential to strengthen connections and 
create synergies between empirical and theoretical work, thus accelerating progress in our 
understanding of the evolution and development of sensitive periods. 
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5.0 Abstract

People are shaped through interactions with environments. Therefore, studying 
environmental stability and change are key to developmental science. The current norm is 
to describe notions of environmental stability and change (e.g., variability, unpredictability, 
instability) using natural language, which tends to be ambiguous. This ambiguity weakens 
the match between theory and methods (e.g., between constructs and measures, research 
questions and analyses) within studies, and leads to inconsistencies across studies. This 
puts developmental studies in disarray: when researchers speak different languages, they 
learn less from each other, which in turn impedes cumulative science and interdisciplinary 
integration. The field needs a shared framework that organizes notions of environmental 
stability and change in unambiguous, formal terms. Here, we present such a framework. 
Although our framework is novel, it draws on statistical definitions of environmental 
stability and change that are already widely used in the other disciplines, such as biology, 
ecology, and economics. To demonstrate feasibility, we apply our framework to a dataset of 
crime rates in New York City across 15 years, focusing on ‘unpredictability’ as a case study. 
We explore different ways to statistically quantify unpredictability, for example, by using 
the autocorrelation, entropy, or the number of changepoints. We find that some results 
generalize across statistical definitions, and others depend on which statistical definitions 
are used. For instance, regions rank similarly in terms of unpredictability based on different 
statistical definitions, and the associations between unpredictability and poverty across 
regions are also similar. However, if we simulate residential changes, individuals rank 
differently in terms of their exposures to unpredictability. This matters for psychological 
research focusing on individual outcomes: it means that different notions lead to different 
conclusions about the impact of unpredictability on key life outcomes such as health, 
wellbeing, and psychopathology. This case study illustrates the merit of having a shared 
framework that creates a structured space for a cumulative science of environmental 
stability and change. To facilitate its use, we include accessible, step-by-step guidelines for 
applying our framework to developmental datasets.
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5.1 Introduction

Environmental stability and change are both central to developmental science. Most 
developmental research assumes, claims, or examines some notions of environmental 
stability and change. For example, researchers study the effect of stability in parental warmth 
on children’s socio-emotional adjustment, or how unpredictable environmental changes 
shape health and cognition. Stable and high parental warmth are associated with better 
adjustment; high unpredictability with worse health. However, limited attention is given 
to defining stability and change in constructs, such as parental warmth or unpredictability, 
in unambiguous ways. As a result, constructs are often loosely connected to measures and 
data analyses approaches are inconsistent across studies. Here, we argue, that to achieve 
better integration of research, we need to express notions of environmental stability and 
change in unambiguous, formal terms; that is, as statistical definitions. 

To illustrate, suppose a researcher is interested in the effects of parental warmth on 
emotional adjustment. Parental warmth is assessed by measuring parents’ responsiveness 
and supportive behaviors during a stressful task (Luby et al., 2012, 2016). A researcher 
who is interested in stability might compute the average across measurements. However, 
a simple average might suffice in some cases but not others. If the researcher cares about 
the overall level of warmth across measures, the average may suffice. If the researcher 
wants to capture not only the overall level of warmth scores but also their consistency, the 
average alone is not enough. In this case, the researcher should also quantify how variable 
warmth scores are across time. Low variability implies similar warmth scores over time and, 
therefore, consistency. Thus, to answer the research question it is necessary to consider the 
distribution of parental warmth and not just the average. 

The need for statistical definitions comes into sharp focus when talking about 
change. Much developmental research is aimed at understanding the challenges that 
environmental change poses to individuals. To identify these challenges researchers study 
how environmental change (e.g., unpredictability) shapes developmental outcomes (e.g., 
health and cognition). Different types of change may result in different developmental 
outcomes. This is important both for understanding functional responses and maladaptive 
responses. Suppose a researcher is interested in whether impulsivity is adaptive in 
unpredictable environments. Theoretical modeling has found that this depends on 
the definition of unpredictability. Impulsivity may be adaptive when the collection of 
resources is often interrupted (‘collection risk’) but not when resource quality is highly 
variable (Fenneman & Frankenhuis, 2020). To test empirical predictions derived from this 
model, it is necessary to explore these different notions of unpredictability and to develop 
appropriate statistical definitions. Similarly, another researcher may be interested in the 
effects of environmental variability on health. She expects that unpredictable changes in 
environmental conditions, but not predictable ones, deteriorate health. A widely accepted 
definition of unpredictability is random variation in harshness across time (Ellis et al., 2009). 
However, such a definition is consistent with multiple statistical formalizations of change 
over time. For example, one researcher might compute variance in harshness across the 
measurement period (e.g., Li et al., 2018). Another might track abrupt shifts in the mean or 
variance in harshness (changepoints; described in Young et al., 2020), and a third one might 
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measure how well current levels of harshness predict future levels (i.e., autocorrelation; 
see, for example, Burgess & Marshall, 2014; Marshall & Burgess, 2015). But which statistical 
definition best captures ‘random variation in harshness’? Do all statistical definitions of 
unpredictability predict the same developmental outcomes?

The need for a framework
Clear definitions of stability and change create a structured space for science to 

progress. Statistical definitions offer an unambiguous way to define these concepts. That is, 
these definitions serve as the building blocks for exploring and testing questions related to 
stability and change. In some cases, our hypotheses and constructs are explicit enough to 
narrow the range of possible building blocks. In other cases, researchers may use different 
building blocks to study the same construct or hypothesis. However, as is often the case, 
they do so because the ambiguity of natural language allows different interpretations 
(Frankenhuis & Walasek, 2020). It is, of course, fine if researchers employ different statistical 
definitions of the same construct in the literature, as long as their definitions are explicit. 
But there are costs. Researchers may not be aware that they are adopting one view over 
the other or realize they unintentionally study a different construct or question than their 
colleagues. Similarly, readers of the resulting literature likely focus on the studied constructs 
and may not notice inconsistencies in statistical definitions across studies. 

The lack of formal statistical definitions of stability and change can also invite flexibility 
in measurement. A recent review identified 15 different measures of unpredictability in 
21 empirical studies (Young et al., 2020). Unpredictability is measured as the number of 
household moves, family disruptions, or changes in parental financial status. These measures 
are used as proxies of ‘stochastic variation in harshness’, even though it is not obvious how 
they relate to possible statistical definitions. However, there exist studies which use measures 
and statistical definitions that come closer to this conceptual definition of unpredictability. 
For example, Li et al. (2018) measure harshness through socioeconomic status and estimate 
linear slopes in harshness for each individual. They quantify unpredictability as the residual 
variance around these slopes. What this statistical notion of unpredictability does not 
capture is whether variation in harshness is predictable or unpredictable (Young et al., 
2020). For instance, the residual variance may be correlated across time or not. If it is, this 
increases predictability (see Table 5.1). 

Clear and unambiguous statistical definitions narrow which measures are valid and 
limit the use of questionable proxies. Inconsistent and vague statistical definitions and 
measures weaken the match between theory and methods (e.g., between constructs and 
measures, research questions and analyses) within studies, and lead to inconsistencies 
across studies. This puts developmental studies in disarray. But, before we can compare and 
evaluate different statistical definitions and use them to inform our measures, we need to 
organize existing definitions. To this end, we present a framework that organizes statistical 
definitions of environmental stability and change (Table 5.1). 

Our framework 
Building on existing work in the social and biological sciences, we integrate familiar 

approaches with elements borrowed from other fields. Our framework provides clear 
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definitions of ‘environmental statistics’ for repeated measures of an environmental variable, 
such as harshness or parental warmth. For each individual, we extract various measures of 
stability and change with different statistical definitions, which can be included as predictors 
in any analysis. 

Our framework focuses on stability and change. Stability statistics describe the overall 
level and distribution of an individual’s data, such as its mean and spread. Change statistics 
describe patterns in data across time. There are two broad classes of change statistics: 
predictable changes and unpredictable changes (Jebb et al., 2015; Ram & Gerstorf, 2009). 
For example, a linear trend describes predictable changes in the data (constant increase 
or decrease), whereas changepoints describe abrupt shifts in the mean, variance, or both. 
Often, multiple statistical definitions are plausible for different constructs invoking stability 
or change. The appropriate statistic depends on the specific research question, hypothesis, 
or theory. For example, a researcher might be interested in how exposure to crime in her 
everyday environment shapes health and cognition. If she is interested in the overall level 
of crime exposure, she might choose the mean. If, instead, she is interested in how changes 
in crime shape health, she might estimate the linear slope in the data. Hypotheses may 
also relate to variability in exposure to crimes. Sudden changes in variability in crime rates 
can indicate a highly unpredictable environment. One way to quantify such unpredictable 
changes is to estimate the number of changepoints in the mean or variance. We describe a 
range of stability and change statistics that are part of our framework in Table 5.1. 

Within individuals, we can quantify the statistical properties of an individual’s 
environment, experiences, or exposures. Across individuals, we can explore how various 
indices of within-person stability and change are distributed in an entire sample. This allows 
us to assess how different environmental statistics relate to each other in a specific sample. 
For example, we may find that environmental statistics indicating high unpredictability 
in samples of individuals from large cities look different in samples from rural areas. Our 
framework is designed to include a selection of environmental statistics particularly relevant 
to development science; it is no exhaustive collection of all possible statistics. 

The benefits of a framework
Our framework has four major benefits. First, the framework increases conceptual 

clarity by highlighting the different ways in which patterns of environmental stability and 
change, such as unpredictability, may be defined and computed. Second, the framework 
provides guidance by offering tools to explore and compute these statistical definitions. 
Third, the frequent application of the same statistics can foster integration and comparability 
of findings across different studies. Fourth, the framework may also help to integrate 
different types of data.

Developmental research often uses individual-level data, parsing the environment 
through the individual’s lens. Such data may include subjective measures through self-
reports, questionnaires, or interviews. Or they may include objective measures through 
scores on a standardized task, the number of specific life events (e.g., household moves or 
bereavement experiences), socioeconomic data (e.g., income or educational attainment), or 
observations in the laboratory. Subjective measures of individuals’ experiences are central in 
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clinical research using complex systems theory to study well-being (e.g., Olthof et al., 2020). 
Our framework complements such work by focusing on stability and change of the external 
(rather than internal) environment. Publicly available datasets can provide insights into an 
individual’s surrounding ecology, such as their home, work and school environment (Kievit et 
al., 2021). Such environment-level data typically offer many more repeated measures than is 
typical in developmental studies using individual-level data. Datasets with information about 
crime, violence, prevalence of disease, or access to educational and healthcare facilities 
are readily available and can be feasibly linked to individual data. Although, such data are 
still underrepresented in developmental studies, few examples exist (Hatzenbuehler et al., 
2021; Miller et al., 2018; Snyder et al., 2011). For example, Hatzenbuehler et al. (2021) 
incorporated environment-level measures of stigma (e.g., institutional policies) alongside 
individual-level self-reports (e.g., experienced discrimination) in a recent study exploring 
the association between stigma and brain volume in Black and Latinx youth. Our framework 
can facilitate the computation of stability and change statistics from such environment-level 
data alongside individual-level data. Studies that bridge both types of data would allow us 
to assess their individual contributions to development. 

Environmental unpredictability: a case study
We use the case of environmental unpredictability to illustrate the four benefits of 

our framework. A framework of environmental statistics provides tools to compute a range 
of unpredictability statistics. It can help distinguish between competing statistical definitions 
of unpredictability and increase comparability across studies that use the same statistics. The 
framework can also enrich existing measures by facilitating the linking between individual-
level and environment-level data. For example, in addition to the number of household 
moves as a measure of unpredictability, we could integrate environmental data for each 
location an individual has lived in. From such data we can extract unpredictability statistics, 
resulting in a higher resolution of the experienced environment. 

Statistic Quantifies Definition Interpretation
Mean Stability Arithmetic mean Average harshness levels across 

measurement period 
Standard deviation Stability Standard deviation Average fluctuations around mean 

level of harshness 
Minimum Stability Lowest value of 

environmental variable
Lowest harshness level during 
measurement period

Maximum Stability Highest value of 
environmental variable

Highest harshness level during 
measurement period

Interquartile range (IQR) Stability Range of the middle 50% of 
the environmental variable

Range of the most common 
harshness levels; a large IQR indicates 
a large range of harshness levels. 

Slope (linear model) Predictable 
change

Linear association between 
time and environmental 
variable 

Indicates the trend of harshness 
across time; a positive slope indicates 
an increase in harshness across time 
and a negative slope a decrease.

Period Predictable 
change

Length of a cycle in the 
environmental variable, if 
any is present 

Presence of a cycle indicates that 
similar harshness values occur every 
cycle.
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Statistic Quantifies Definition Interpretation
Autocorrelation Unpredictable 

change
The extent to which current 
values correlate with future 
values of the environmental 
variable 

High absolute autocorrelation 
indicates that current harshness 
levels are predictive of future 
harshness levels.

Partial autocorrelation Unpredictable 
change

The extent to which current 
values correlate with future 
values of the environmental 
variable correcting for 
the correlation with 
intermediate values

Absolute partial autocorrelation 
indicates the extent to which current 
harshness levels are predictive of 
future harshness levels without 
considering intermediate harshness 
values.

Entropy Unpredictable 
change

Approximate entropy for 
time series; the extent 
to which environmental 
fluctuations are irregular 

Low entropy indicates that harshness 
levels across the measurement 
period fluctuate regularly and 
predictably.

Spectral coefficient Unpredictable 
change

Describes patterns of 
noise in the environmental 
variable and is sometimes 
called color of noise 

Indicates the extent to which noise 
in harshness is predictable across 
time. Noise can change randomly 
across time (white noise, spectral 
coefficient around 0). It can change 
slowly, resulting in long runs of above 
or below average conditions (red and 
brown noise, coefficient between 1 
and 2). Or, it can change rapidly but 
predictably (blue noise, coefficient 
below 0). 

Number of changepoints 
in mean

Unpredictable 
change

Number of times the mean 
of the environmental 
variable changes 

Indicates how often the average 
harshness level changes across the 
measurement period. We can look 
separately at positive or negative 
changes in mean. 

Number of changepoints 
in variance

Unpredictable 
change

Number of times 
the variance of the 
environmental variable 
changes 

Indicates how often variance in 
harshness levels changes across the 
measurement period. We can look 
separately at positive or negative 
changes in variance. 

Average time between 
changepoints

Unpredictable 
change

Average time between any 
two changepoints 

A short average time between 
changepoints indicates that changes 
in harshness (mean and/or variance) 
occur at a high frequency. 

Standard deviation 
of time between 
changepoints

Unpredictable 
change

Standard deviation of the 
time between changepoints 

Indicates variability in the time 
between changepoints. High 
variability indicates that changepoints 
can occur abruptly. 

Longest period without 
changepoints

Unpredictable 
change

Longest period without 
changepoints 

Indicates the duration of the longest 
period with stable mean and/or 
variance in harshness. 

Table 5.1 Glossary of environmental statistics. Environmental statistics are used to quantify stability and change. 
The latter is further divided into predictable and unpredictable change. In the fourth column, we provide an 
interpretation of each statistic using harshness as an example. 

In this case study, we conceptualize unpredictability as random variation in harshness 
across space, time, or both (Ellis et al., 2009). Harsh environments are characterized by 
greater risks of disability and death (Brumbach et al., 2009; Ellis et al., 2009). In non-human 
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animals, resource scarcity and predator density are indicators of harshness. In humans, 
poverty and crime rates are often used to measure harshness (Brumbach et al., 2009; Young 
et al., 2020). We illustrate our framework using existing, publicly available crime records in 
New York City (USA) as indices of harsh environmental conditions. The data span 15 years 
from January 2006 until December 2020. For different regions in NYC, we present a range of 
statistical definitions of unpredictability. 

We use six different statistical definitions to quantify unpredictability as ‘random 
variation in harshness’: the standard deviation, changepoints in mean, changepoints in 
variance, autocorrelation, entropy, and color of noise. The standard deviation describes the 
average deviation from the mean in harshness. In Table 5.1 we have referred to the standard 
deviation as a stability statistic because it summarizes the distribution of the data and not 
how they change across time. To illustrate, suppose that we compute the standard deviation 
of an individual’s time series. The resulting value tells us something about how the data 
fluctuate around the mean. However, if we would randomly shuffle the data points, the 
resulting standard deviation would not change. The standard deviation does not consider the 
order of individual data points across time. Our other unpredictability statistics do take the 
order into account. Nonetheless, we included the standard deviation as an unpredictability 
statistic because previous work has used it to quantify unpredictability (e.g., Li et al., 2018). 

Changepoints describe abrupt shifts in the mean or variance in harshness (Haynes et 
al., 2016; Killick & Eckley, 2014; Young et al., 2020). The autocorrelation indicates how much 
current harshness values predict future values. Suppose we have collected monthly measures 
of harshness across one year. The autocorrelation then corresponds to the correlation 
between these data and the same data shifted by one month (i.e., by one time unit) (Burgess 
& Marshall, 2014; Marshall & Burgess, 2015). This is called a lag-1 autocorrelation. Lag-2 
autocorrelation would shift the data by 2 months. Entropy of a time series quantifies the 
extent to which harshness values change regularly or irregularly (Pincus, 1991; Richman & 
Moorman, 2000). For example, a time series that consists of only two alternating harshness 
values is perfectly regular, resulting in low entropy. If changes between those values occur 
randomly, entropy would be high, indicating high unpredictability. Color of noise indicates 
the extent to which noise in harshness is predictable across time (Burgess & Marshall, 2014; 
Marshall & Burgess, 2015; Ruokolainen et al., 2009; Vasseur & Yodzis, 2004). Noise is what 
is left of the data after subtracting systematic patterns, such as trend and season. Noise can 
change randomly across time (white noise, color of noise around 0). It can change slowly, 
resulting in long runs of above or below average conditions (red and brown noise, color of 
noise between 1 and 2). Or, it can change rapidly but predictably (blue noise, negative color 
of noise). Autocorrelation, entropy, and color of noise tackle quantifying unpredictability in 
slightly different ways. We refer the reader to the respective references for technical details 
on each of the approaches. 

Using simulations, we also illustrate the potential for linking environment-level data 
to individual-level data. Based on the crime data, we simulate a sample of individuals who 
moved across different regions in NYC during the measurement period. For these simulated 
data, we present a range of stability and change statistics describing per-individual exposure 
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to crime rates across time. All our code, including the simulated data, is available at https://
github.com/Nicole-Walasek/environmental_statistics/.

5.2 Methods

For our case study of unpredictability, we first apply our framework to different 
regions in NYC. This allows us to compute and compare a range of unpredictability statistics 
within and across regions. Second, we apply our framework to a simulated dataset of 
individuals. 

Public datasets can span years or decades and often provide daily measurements. They 
typically record crimes for specific regions within a city or country. However, developmental 
researchers are interested in environmental stability and change across an individuals’ 
lifespan. Therefore, we use the crime data to simulate individuals moving between different 
regions within NYC. In principle, such data could be obtained by linking people’s residential 
history to public crime records of each residential location (see Hatzenbuehler et al., 2021; 
Miller et al., 2018; Snyder et al., 2011 for examples).

From here on, we first describe the dataset (section ‘New York crime data’), then 
explain how we identified regions of interest (section ‘Regions of interest’), and finally use 
those data to simulate a sample of individuals (section ‘Simulating individuals’).  

New York crime data
The dataset is part of the NYC Open Data project1. This initiative provides open access 

to the information that is available to the New York City government. The database contains 
data related to business, governance, education, environment, safety, and health. We will 
focus on the NYPD Arrests Data (Historic)2. This dataset records every arrest by the NYPD 
dating back to 2006 and is still being updated every quarter. Each entry holds information 
about the type of crime, the arrest location, and the time of arrest. We only use information 
about crimes related to assault resulting in 644,684 entries across 15 years, from January 
2006 until December 2020. Table A3.1 in Appendix 3 lists all offenses that we included under 
‘assault’ and their description provided by the police department. 

Regions of interest
Imagine a person living in NYC between 2006 and 2021. We make two assumptions 

for our simulation. First, she likely spends most of her time (on average) within a 5 km 
distance from her home. Second, over those 15 years, she may change residency between 
different regions within the city, where she might experience varying levels of violent crimes. 
These crimes occur more frequently in some regions than others. 

We simulated a sample of individuals who may move to different regions of NYC 
between 2006 and 2020 and measured their exposure to crime across time and space (i.e., 

1 https://opendata.cityofnewyork.us/
2 https://data.cityofnewyork.us/Public-Safety/NYPD-Arrests-Data-Historic-/8h9b-rp9u
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different regions within NYC). To do so, we first identified regions of interest where our 
simulated individuals might live. We picked regions in NYC that vary in crime rates. In addition, 
we used reports from the New York City Institute for Children, Poverty, and Homelessness3 to 
identify regions that vary in wealth, because crime rates tend to be positively associated with 
poverty (Barone & Mocetti, 2016; De Courson & Nettle, 2021; Rufrancos & Power, 2013). 
Based on the report, we selected five regions of interest: Morrisania, Brownsville, Ozone 
Park, Upper East Side, and Tottenville (from poorest to wealthiest). We used Google Maps 
to pick central locations within these regions and extracted their geographic coordinates 
(longitude and latitude). Next, we defined a 5 km radius around each region’s central point 
and identified crimes occurring within these regions. Some assaults may belong to multiple 
regions due to small overlap between regions (Figure 5.1). 

Figure 5.1, panel A shows the five regions of interest and a 5 km radius (yellow 
circles) delineating the crimes relevant to each region in NYC. We also plot the locations of 
all assaults occurring in NYC throughout 2013 (arbitrarily chosen to illustrate our approach) 
to visualize the spatial variance across regions. Each green dot corresponds to one reported 
assault. We show the temporal variation by plotting the monthly number of assaults 
recorded across the measurement period for each region in Figure 5.1, panel B. The vertical 
axis displays the number of assaults per 100,000 inhabitants to correct for population 
density. The grey shaded area highlights the year 2013. In addition, we show different 
temporal resolutions (i.e., daily, weekly, biannually, and yearly) of assault rates in Appendix 
3, Figure A3.1. Although our framework can be applied to any resolution of the data, we 
chose a monthly resolution for all analyses. The biannual resolution hides a large portion of 
the variation in crime rates visible at higher resolutions. The weekly and monthly resolution 
show qualitatively similar patterns of variation. We chose the monthly resolution because it 
reduces the number of data points per region by a factor of 52, from 9,360 to 180, making 
it computationally less expensive to extract environmental statistics. Of course, researchers 
should choose resolutions that match their research questions and theories (Hopwood et 
al., 2021). For example, if a theory states that monthly, weekly, or yearly fluctuations in 
crime rates have a different impact on development, those resolutions are an appropriate 
focus. However, we acknowledge that sampling frequency in developmental research is 
often dictated by practical limitations, such as funding and the availability of participants.  

Simulating individuals 
We used the region-wise data as a basis for our simulation. Suppose an individual 

lives in Brownsville in January 2006. At each time period (month), there is a probability Pstay 
that she will keep living in Brownsville and a probability Pmove = 1 - Pstay, that she will move 
to a different region. We then specify whether moves from Brownsville to the other five 
regions are equally likely or whether some moves are more likely than others. We chose 
Pstay = 0.98 for all regions of interest and specify an equal probability of moving to any of 
the other five regions, 

esolution of the 

hides a large portion of 
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if a theory states that 
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. With this setup, we can simulate a sequence of 
regions for a person who lives in Brownsville at the onset of 2016. Rather than deciding on 
a fixed starting region for the entire sample, we randomly sampled starting regions, one for 
each simulated individual. Each region was equally likely to be sampled. We simulated 500 

3 https://www.icphusa.org/reports/on-the-map-the-dynamics-of-family-homelessness-in-new-york-city-2/
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individuals. Figures 5.2-5.3 and 5.5-5.6 show examples of time series for a subset of our 
simulated individuals. 

Figure 5.1 Regions of interest in the New York Crime data. Panel A shows the five regions of interest Morrisania, 
Brownsville, Ozone Park, Upper East Side, and Tottenville (from poorest to wealthiest) and a 5 km radius around 
them in yellow. The horizontal axis shows the longitude and the vertical axis the latitude. Green dots indicate 
assaults occurring throughout 2013. Each dot corresponds to one reported assault. Panel B shows monthly assault 
rates across the measurement period for each region. The vertical axis displays the number of assaults per 100,000 
inhabitants and the horizontal axis denotes time in years. The grey column highlights the year 2013.

Our method is flexible. We can compare individuals who have moved often to those 
who moved less frequently by varying the overall probability of moving. Similarly, we can 
compare individuals that have experienced high levels of harshness to those who have 
experienced lower levels. We can do this by making moves within harshness levels more 
likely and moves across harshness levels less likely. Based on this assumption, a person 
currently living in Brownsville would be more likely to move to Morrisiania than to Tottenville 
(Figure 5.1). Such flexibility allows us to explore the effects of different assumptions. For 
example, we could explore how a sample with low upward mobility (i.e., difficulty escaping 
poor economic circumstances) compares to a sample with higher mobility. Alternatively, we 
may use actual demographic data – indicating where people live and how often they move 
– to inform our initial distribution of starting regions and move probabilities. 
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5.3 Results

We divide the results into two parts. In the first part, we present results of applying 
our framework to the New York Crime data. We show unpredictability statistics for each 
region of interest (Table 5.2, Figure 5.2) and simulated individuals who move between regions 
(Figures 5.3-5.4). We illustrate to what extent different definitions of unpredictability result 
in different rank-orderings of regions and individuals. In addition, we present examples of 
stability and change statistics for the simulated individuals (Figures 5.5-5.6). In the second 
part, we provide an accessible, step-by-step guide on how to apply our framework. 

Environmental statistics – New York Crime data

Statistical definitions of unpredictability 
We show six different statistical definitions to quantify unpredictability as ‘random 

variation in harshness’: the standard deviation, entropy, color of noise, autocorrelation (at 
a lag of one month), changepoints in mean, and changepoints in variance (see Tables 1-2). 
Higher standard deviation, entropy, and number of changepoints in mean and variance 
indicate higher levels of unpredictability. The same is true of lower absolute (i.e., the 
magnitude ignoring the sign) autocorrelation and color of noise. 

We consider the NYC regions of interest. Figure 5.2 shows changepoints in mean 
(green line) and variance (grey rectangles) in monthly assault rates for each region. On 
average, a higher green line implies more assaults and a longer rectangle more variance. 
Individual horizontal, green lines and individual grey rectangles mark segments of stable 
mean and variance in the data. A shift in the green line or a new grey rectangle indicate 
when the mean or variance in the data have changed. The total number of such changes 
across the measurement period indicates the number of changepoints in mean or variance. 
We observe differences in the number of changepoints in mean across the different regions 
with Morrisania having the most and Tottenville the fewest. The differences in the number 
of changepoints in variance are smaller (Table 5.2). Almost all regions show an increase in 
mean or variance of assault rates between 2007 and 2010 and a decrease between 2019 and 
2021. The increase might reflect the global financial crisis in 2007 and 2008. The decrease 
may be due to lockdowns and other measures against the Corona virus in 2020 and 2021. 

Table 5.2 provides statistics of unpredictability for all regions of interest. Per column, 
grey bars indicate how different regions rank in unpredictability for a given statistical 
definition. The longer the bar, the more unpredictable that region is relative to the others. 
Table 5.2 shows that Tottenville ranks lowest in unpredictability according to the majority 
of statistical definitions, while Morrisania ranks highest. The high entropy value and high 
number of changepoints in variance of the Upper East Side may be due to its spatial overlap 
with Morrisania (Figure 5.1). Across our regions of interest, poverty appears to be associated 
with higher levels of unpredictability. 
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Table 5.2 Unpredictability statistics in regions of interest in New York City between January 2006 and December 
2020. Columns indicate statistical definitions of unpredictability and rows regions in NYC. Within each column, 
the length of grey bars ranks all regions according to their degree of unpredictability. The longer the bar, the 
more unpredictable that region is relative to the other regions. ‘SD’ refers to the standard deviation, ‘AC’ to the 
autocorrelation, and ‘CP’ to changepoints. 

Figure 5.2 Changepoints in mean and variance in NYC regions of interest. Each panel depicts one region of interest. 
Within each panel, the horizontal axis shows time in years and the vertical axis number of assaults per 100,000 
inhabitants. The green line tracks changes in mean and grey rectangles track changes in variance in monthly assault 
rates. A higher green line implies more assaults; a longer rectangle more variance. We show the values of other 
unpredictability statistics at the bottom of each subplot. The abbreviation ‘ac’ refers to the autocorrelation. 
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Simulated individuals
Next, we examine statistics of unpredictability for simulated individuals who 

moved across our regions of interest. Figure 5.3 shows statistics of unpredictability 
for individuals with the same standard deviation. Although matched in their standard 
deviation, their time series look quite different. Individual 382’s data show a high number 
of changepoints in variance and moderately high entropy, all suggesting exposure to high 
levels of unpredictability. Individual 80’s data show fewer changepoints in variance, and 
higher autocorrelation, indicating relatively low exposure to unpredictability. However, the 
number of changepoints in mean is higher for individual 80 and the color of noise values 
are similarly low, suggesting mixed patterns of unpredictability. Had we just looked at the 
standard deviation, we would have not been able to distinguish the time series. Even if we 
compare individuals who have the same standard deviation and number of changepoints in 
mean (Figure 5.4), their time series look rather different. However, statistics across all three 
individuals are more similar than they were when only matching the standard deviation. 
Different unpredictability statistics contribute to the overall picture, creating a higher 
resolution description of the environment experienced by an individual. This helps us to 
detect nuances in levels of unpredictability among individuals.  

Figure 5.3 Unpredictability statistics for two arbitrarily chosen individuals with the same standard deviation (SD382 
= 4.75, SD80 = 4.76). The panel headers identify two simulated individuals (382 and 80). Within each panel, the 
horizontal axis shows time in years and the vertical axis number of assaults per 100,000 inhabitants. The green line 
tracks changes in the mean and grey rectangles track changes in variance in monthly assault rates. A higher green 
line implies more assaults; a longer rectangle more variance. We show the values of other unpredictability statistics 
at the bottom of each subplot. The abbreviation ‘ac’ refers to the autocorrelation. 

Comparing regions and simulated individuals
In most regions of interest, unpredictability statistics paint a similar picture. Regions 

that score low on unpredictability on one of the statistics also tend to score low on others. 
The autocorrelation breaks this pattern. A reason for this is that the autocorrelation picks 
up trends in the data. Trends in mean often cause high autocorrelation values of an entire 
time series, even if subsets of the time series only show relatively low autocorrelation (see 
Brownsville Figure 5.2, Table 5.2). A positive (negative) trend implies that current values 
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in the time series are associated with higher (lower) values later in time, causing high 
autocorrelation. To account for this, we may choose to first remove trends in the time series 
prior to computing the autocorrelation (see Steps 2-4 in ‘A guide to using the framework’). 

Unpredictability statistics of simulated individuals who moved across regions 
are less consistent. Even when we match individuals in standard deviation and number 
of changepoints, the other statistics do not always point in the same direction. That is, 
individuals rank differently in terms of their exposures to unpredictability. This may indicate 
that quantifying unpredictability is more difficult in time series of individuals than in time 
series of regions. A reason for this may be that assault rates within regions only vary across 
time, whereas assault rates within simulated individuals vary across both time and space. To 
represent data that vary temporarily and spatially, we may need to use a higher number of 
environmental statistics or statistics that are specialized for both types of variation (Burgess 
& Marshall, 2014; Guélat & Kéry, 2018; Marshall & Burgess, 2015; Stimson, 1985). 

Figure 5.4 Unpredictability statistics for arbitrarily chosen individuals with the same standard deviation (SD230 = 
3.09, SD265 = 3.05, SD69 = 3.05) and the same number of changepoints in mean (n = 7). The panel headers identify 
the simulated individuals (230, 265 and 69). Within each panel, the horizontal axis shows time in years and the 
vertical axis number of assaults per 100,000 inhabitants. The green line tracks changes in mean and grey rectangles 
track changes in variance in monthly assault rates. A higher green line implies more assaults; a longer rectangle 
more variance. Additionally, we show the values of other unpredictability statistics at the bottom of each subplot. 
The abbreviation ‘ac’ refers to the autocorrelation. 
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Quantifying stability and change
Figure 5.5 visualizes one stability, one predictable, and one unpredictable change 

statistic for two simulated individuals. The yellow, dashed line indicates the mean of assault 
rates across the measurement period (stability statistic). The green line indicates the linear 
slope in the data (predictable change). Grey rectangles track changes in variance in monthly 
assault rates (unpredictable change). A longer rectangle implies more variance within each 
segment. 

The different statistics tell different stories. Individual 55 (left panel) shows a slightly 
lower average exposure to assault rates than individual 105 (right panel). However, the 
mean hides the fact that individual 55 has also experienced a steep increase in assault rates 
and individual 105 experienced a decrease. We also observe that individual 55 experienced 
fewer changepoints in variance. 

To better understand the variability in the data, we can compute stability and change 
statistics for the variance. This can help us answer different questions about the data. For 
example, what is the mean level of variability in crime rates an individual has experienced? 
Has an individual experienced long-term trends in variability in crime rates? To this end, 
Figure 5.6 shows mean, slope, and changepoints in variance of the squared deviations from 
the mean. Variability in the data may also be conceptualized in different ways. For example, 
similar to Li et al. (2018), we could use deviations from the slope instead of deviations from 
the mean. Our framework allows for both possibilities. Figure 5.6 shows statistics for the 
same individuals as in Figure 5.5. These statistics reveal that both individuals experienced 
very similar average levels of variability in assault rates. Individual 55 experienced an 
increase in variability, whereas variability in assault rate exposure slightly decreased across 
time for individual 105. However, for both individuals, non-linear models (rather than a 
linear slope) may be better suited to capture how variability behaves across time. Our 
framework provides the possibility to fit non-linear models. 
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Figure 5.5 Statistic of stability and change for arbitrarily chosen individuals. We show three types of statistics: 
one stability statistic, one predictable change statistic, and one unpredictable change statistic, for two simulated 
individuals. The panel headers identify the simulated individuals, i.e., 55 and 105. Within each panel, the horizontal 
axis shows time in years and the vertical axis number of assaults per 100,000 inhabitants. The yellow, dashed line 
indicates the mean (stability statistic) of assault rates across the measurement period, the green line indicates 
the linear slope in the data (predictable change), and the grey rectangles track changes in variance (unpredictable 
change). The height of a rectangle is proportional to its variance.

Figure 5.6 Statistic of stability and change applied to the squared deviations from the mean. We show three types 
of statistics: one stability statistic, one predictable change statistic, and one unpredictable change statistic, for two 
simulated individuals. The panel headers identify the simulated individuals, i.e., 55 and 105. Within each panel, the 
horizontal axis shows time in years and the vertical axis variance in the number of assaults per 100,000 inhabitants. 
The yellow, dashed line indicates the mean (stability statistic) of assault rates across the measurement period, 
the green line indicates the linear slope in the data (predictable change), and the grey rectangles track changes in 
variance (unpredictable change). The height of a rectangle is proportional to its variance.
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A guide to using the framework
We provide an accessible step-by-step guide for applying our framework (Figure 5.7). 

The framework can be understood as a tool for data compression: it reduces the complexity 
of a raw time series to a few statistics, while trying to maintain information about how the 
data behave across time. Here, we describe some of the specific properties of time series 
data that are relevant to our methodology. We provide more detailed instructions about 
how to use the framework in Appendix 3. 

Step 1
First, we check whether the data meet the criteria for time series analyses. Our 

framework takes a dataset with repeated measures of an environmental variable as input. 
Ideally, the dataset has at least 20 repeated measures per individual. The more repeated 
measures, the better: some time series modeling techniques require at least 50 observations 
(Haslbeck & Ryan, 2021; Jebb et al., 2015). As is the case with all cut-offs, they should not 
be understood as strict rules but as guidelines. A dataset with 15 or 19 repeated measures 
may also be suitable for our framework (Hyndman & Athanasopoulos, 2018). However, the 
lower the number of repeated measures, the more likely statistics may be tracking noise 
in the data, increasing uncertainty in estimates. In these cases, we should be cautious 
when interpreting the values of environmental statistics. Also, smaller samples are more 
problematic for some statistics than others. For instance, the mean over 15 data points 
might be a good representation of the data if the variance is low. However, computing the 
autocorrelation or changepoints for those same data might result in worse estimates. All 
else being equal, shorter time series imply noisier estimates. 
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Figure 5.7 A step-by-step guide to using our framework. Our framework takes longitudinal data as input and 
returns a set of environmental statistics. First, we check whether the data meet the criteria (Step 1) and identify 
our construct of interest (Step 2). Then we can visualize and preprocess your data (Steps 3-4), before extracting 
environmental statistics of stability and change (Step 5). Lastly, we can choose to use environmental statistics 
relevant to our construct of interest as predictors in subsequent analyses (Step 6).

Our framework is more easily applied when measures are equally spaced in time (e.g., 
once a month or year). Equal spacing is especially important for computing autocorrelation 
and decomposing the time series (see Steps 2-4). These computations are common in time 
series analyses (de Haan-Rietdijk et al., 2017; Jebb et al., 2015; Jones, 1984). Equal spacing 
matters because time series methods typically make assumptions about the sampling 
frequency of the data. For example, autocorrelation can be computed at different lags in the 
data. If data is measured monthly, autocorrelation at lag 1 corresponds to the correlation 
of the time series with itself shifted by one month. Lag 2 autocorrelation uses a shift by two 
months. To meaningfully estimate the autocorrelation we require equal, monthly spacing. 



108   |   Chapter 5

There are different ways of dealing with unequal spacing. If the irregularity in spacing 
is small, one option is to ignore it while being explicit about this as a (minor) limitation. For 
example, if measures are taken every first of the month but some are taken on the second 
or third, the spacing can still be considered equal. However, if the degree of irregularity is 
more serious one solution is to exclude statistics and preprocessing steps that assume equal 
spacing (i.e., autocorrelation and time series decomposition). Thus, in those cases, we advise 
to only compute statistics that do not make assumptions about regularity. Or, the data can 
be transformed to become equally spaced. This can be achieved by interpolation (Pavía-
Miralles, 2010). Interpolation uses available data points in a time series to fill the empty 
slots that would not be there if the series had been perfectly regular. Interpolation estimates 
the most likely values for those slots using the available data. However, interpolation can 
also bias the data and distort their true dynamics, so before using this method, we advise 
exploring additional literature (Dezhbakhsh & Levy, 1994; Erdogan et al., 2005). 

We do not offer recommendations on sample size because our framework does not fit 
models to the entire sample. Fitting models to an entire sample is common when exploring 
research questions about a population. Our framework only fits models (e.g., estimating a 
linear slope) to individual time series. Thus, it can be applied to small samples if the goal is 
to only explore these individual time series. However, if the extracted statistics will be used 
as predictors in an analysis to explore questions about a population, the appropriate steps 
should be taken to ensure an adequate sample size (see Steps 5-6).  

Steps 2-4
Second, we need to decide on the construct that we want to compute environmental 

statistics for. To show how our framework can be applied, we explored unpredictability as 
a case study. Generally, it holds that more precise construct definitions make it easier to 
narrow the range of possible statistics. 

Third, we suggest visually exploring the data. Our framework offers various options. 
We can plot the raw time series, the autocorrelation, and changepoints of randomly selected 
individuals (Appendix 3, Figure A3.2). Additionally, we can decompose the time series into 
its individual components: trend, season, and random component. The trend describes how 
the level of a time series changes with time. Season refers to the presence of regularly 
occurring patterns within a particular time period. The random component is the residual 
data after subtracting the trend and seasonal patterns. Visual exploration is necessary to get 
familiar with the data and to decide on whether and how we should preprocess the data 
(see Step 4).

By visually exploring the data, we can assess whether they are stationary or not. If the 
mean, variance, or autocorrelation of a time series are constant, it is stationary. However, if 
the mean, variance, or autocorrelation change, the series is non-stationary (Jebb et al., 2015; 
Young et al., 2020). Time series with a trend or increases or decreases in variance are non-
stationary. Some time series models assume stationarity, and non-stationary series need 
to be transformed to meet this assumption (Jebb et al., 2015). Removing changes in mean 
and variance is usually sufficient to achieve stationarity. Our framework does not require 
stationary data. However, as noted earlier trends in the mean or variance might distort 
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some of the statistics in Table 5.1. To estimate how much current values are correlated with 
later values irrespective of the trend, we can compute the autocorrelation of the stationary 
series. Our framework, therefore, extracts some statistics for both the raw data and the 
stationary data. 

Fourth, we can preprocess the data before extracting statistics. For example, if we 
want to explore statistics over stationary series, our framework provides tools to remove 
the trend in mean or variance, and seasonal components from the data. It also offers the 
option to split the data at different time periods, resulting in several smaller datasets. This 
may be useful if we are interested in separately exploring environmental statistics before 
and after a specific age or time period. 

Steps 5-6
Fifth, we extract environmental statistics of stability and change. The framework 

takes our input data (raw or preprocessed) and returns a dataset that contains a range of 
environmental statistics for each individual. To estimate a slope, you can specify a model 
that is fitted to each individual’s time series. In the simplest case, the framework will fit a 
linear model with time as the predictor and the environmental variable as the outcome. We 
could also apply more complicated models, such as a polynomial. We can then select and 
plot resulting environmental statistics that fit the conceptual definition of our construct. 
This step will result in environmental statistics and plots as seen in Table 5.2 and Figures 
5.2-5.6. 

Sixth, we may use the resulting statistics (e.g., unpredictability scores for each 
individual) as variables (e.g., predictors) in subsequent analysis. For instance, a researcher 
may explore the impact of unpredictability on key life outcomes such as health, wellbeing, 
and psychopathology. As noted earlier, it is important to ensure a sufficient sample size for 
such an analysis. 

5.4 Discussion

Developmental science struggles with a flurry of conceptualizations and 
operationalizations of constructs central to the field, such as unpredictability. We have 
offered a step towards coherence by proposing a framework that provides statistical 
definitions of environmental stability and change. These definitions can serve as building 
blocks that clarify connections between empirical studies, enabling cumulative construction 
of knowledge. Researchers using our framework will also be able to better integrate their 
theory and findings with those in the other biological and social sciences (e.g., biology, 
ecology, anthropology), which have been using similar frameworks for decades (Bernardi & 
Hutter, 2007; Burgess & Marshall, 2014; Hammel, 2005; Marshall & Burgess, 2015; Vasseur 
& Yodzis, 2004; Warlaumont et al., 2021). 

To showcase our framework, we have presented a case study of unpredictability, 
using publicly available crime data from New York City. In this section, we discuss how 
our framework can help advance research using constructs of environmental stability and 
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change, such as unpredictability. First, our framework affords comparing and correlating 
different statistical definitions of the same construct. Second, it can facilitate linking 
individual- and environment-level data. Third, it can inform conceptual definitions and 
measures of constructs. Fourth, it can aid the development of a database of environmental 
statistics. Fifth, it can bridge theoretically- and empirically-driven approaches to studying 
environmental exposures. The first three points highlight benefits for individual studies, 
whereas the latter two discuss benefits that emerge across studies. We close by discussing 
limitations.  

Comparing and correlating environmental statistics
Our framework can be used to examine the correlations between different statistical 

definitions of the same construct. For instance, our analysis showed that different statistical 
definitions produced similar rank orderings of regions along the dimension of unpredictability. 
Across regions, we also observed a positive association between different unpredictability 
statistics and poverty. Unpredictability statistics of simulated individuals who moved across 
these regions resulted in less consistent rankings of individuals. Suppose that we would 
have also computed unpredictability statistics for regions within other cities in the US, or 
more rural areas. We could explore whether statistical definitions of unpredictability behave 
similarly within different cities and rural areas. With a larger sample of regions, we could 
compute correlations between different statistical definitions of unpredictability. We may 
also test the associations between different definitions and poverty. Such work would reveal 
the extent to which different types of unpredictability covary with each other, and covary 
with poverty. It may also help us understand the factors that make some environments more 
unpredictable than others (e.g., temporal fluctuations in crimes). Similarly, unpredictability 
statistics may also be computed at other spatial resolutions, such as provinces, states, or 
countries. With such data we could explore whether unpredictability statistics look similar 
on different spatial resolutions. We may also study whether high unpredictability within a 
country shapes development in different ways than high unpredictability within a city. 

Linking individual- and environment-level data
As already noted, our framework can be applied to individual-level data, as well 

as environment-level data (e.g., crime records). In our case study, we have shown how 
to compute environmental statistics for environment-level data, both on their own (NYC 
regions) and linked to individuals (simulated data). Combining individual- and environment-
level data can paint a more precise picture of an individual’s lived experience. Examples of 
integrating data of an individual’s surrounding ecology into developmental studies already 
exist. For example, Snyder et al. explored whether the prevalence of crime in a woman’s 
surrounding ecology predicts a preference for aggressive and physically strong men 
(Snyder et al., 2011). Current and childhood prevalence of crime were assessed by linking 
women’s zip codes to local crime indices. Similarly, Miller et al. explored whether individual 
differences in brain connectivity moderate the relationship between cardiometabolic health 
(e.g. obesity or insulin resistance) and neighborhood violence (Miller et al., 2018). As a proxy 
for neighborhood violence, they computed a neighborhood murder index using public, 
local crime records. Both studies benefitted from the inclusion of public datasets to enrich 
individual-level measures of crime and violence. In these cases, environment-level data 
enriched answers to existing research questions. But environment-level data can do more 
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than that. They provide us with opportunities to ask new research questions. For example, 
a recent study investigated whether structural forms of stigma resulting from regional social 
policies, shape brain development in Black and Latinx youth (Hatzenbuehler et al., 2020). 
Without the availability of environment-level data we would not be able to ask this question.  

Another benefit of using publicly available data is that they often provide a higher 
number of repeated measures than data collected in the laboratory (Kievit et al., 2021). Kievit 
et al. (2021), however, also pointed out challenges to using such data. Openly available data 
may have been collected with a different purpose in mind and may drastically vary in ease of 
handling, depending on the size of the dataset and the documentation. In addition, such data 
may be subject to bias. For example, the number of recorded assaults in NYC in our dataset 
may be biased by the police. Police officers may consciously or subconsciously under- or 
overreport assaults occurring in different demographic areas (Warren, Tomaskovic-Devey, 
Smith, Zingraff, & Mason, 2006). We were not able to determine for our data whether they 
contain bias. However, it is important to be aware of the possibility of bias in the data and 
to be cautious when interpreting findings.

Constructs, measurements, and statistical formalizations
We have focused on statistical definitions of environmental stability and change, 

using the construct of unpredictability as a case study. However, difficulties also arise at 
earlier stages when developing such constructs and their measures. Constructs in psychology 
often suffer from the ‘jingle-jangle’ fallacy: we consider constructs with similar names to be 
theoretically and empirically similar and those with dissimilar names to be different. Some 
might think this problem can be solved by giving the underlying constructs more distinctive 
names. However, the real problem lies deeper: because natural language is ambiguous, the 
definition of constructs is imprecise. This problem can be overcome through formalization. 
But even if we used theory to define constructs precisely, we still need to empirically verify 
that our constructs measure what they are supposed to. This involves checking whether 
indicators of our construct correlate with indicators of theoretically similar constructs 
(‘convergent validity’) but not with those of dissimilar constructs (‘discriminant validity’). 
This step is often omitted when developing new constructs (Flake & Fried, 2020; Hodson, 
2021). As a consequence, some psychological constructs that are considered theoretically 
distinct in the literature are actually highly correlated (e.g., burnout and depression; 
Schonfeld & Bianchi, 2016; Schonfeld & Verkuilen, 2019; grit and conscientiousness; Credé 
et al., 2017). Although their measurement instruments were designed to measure distinct 
constructs, they do not. We do not know whether the measurement instruments are ill-
suited to capturing all (and only those) elements that are relevant for the constructs or 
whether these constructs are actually the same. 

The problem of construct and measurement validity is complex and there exists no 
easy solution. As an example of steps taken to improve these issues, Flake and Fried developed 
a guide to identify ‘questionable measurement practices’, such as non-transparent reporting 
of the measurement procedure (Flake & Fried, 2020). They also discuss the use of formal 
theorizing as one way to develop more precise construct definitions. While our framework 
does not offer solutions to construct and measurement validity, it may aid the development 
of more precise definitions. Just like formal theorizing and modeling, our framework 
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invites researchers to be explicit about the conceptual and statistical definitions of their 
constructs (Borsboom et al., 2021; Frankenhuis & Tiokhin, 2018; Smaldino, 2020). When 
various statistical definitions are equally suited to capture the construct, this may indicate 
that its conceptual definition is not (yet) precise enough. Our framework encourages the 
exploration of different statistical definitions and the subsequent refinement of constructs 
and measurement instruments. 

A database of environmental statistics 
Applied across studies, our framework can contribute to building a database of 

environmental statistics for developmental research (Frankenhuis, Nettle, et al., 2019). Such 
a database would function as an open, shared platform for storing statistics computed for 
different environmental dimensions. Statistics may be computed across both time and space 
(e.g., autocorrelation across a child’s first ten years of life and different residencies) and 
different resolutions (e.g., days or years, cities or countries) (see also Mendoza & Fausey, 
2013). Knowing the range of values for different environmental statistics has the potential 
to inform empirical and theoretical work. 

Empirical researchers can use the database to examine existing hypotheses or 
generate new ones. For example, the database could provide the necessary data to test 
the association between different statistical definitions of unpredictability and poverty. 
Theoretical modelers can use it to set model parameters based on empirical values. For 
instance, a modeler may want to explore to what extent environmental stability shapes 
organisms’ ability to adjust development based on early experiences. She might use the 
database to set the autocorrelation parameters in her model to empirically occurring values. 
Modelers could also use the database to evaluate the plausibility of model outcomes. 
For instance, if modeling shows that it is only adaptive to use early experience to shape 
development if environmental autocorrelation is very high (Nettle et al., 2013), she might 
consult the database to evaluate how common such high values are.

Quantifying the statistical structure of the environment on shorter time scales 
has already proven to advance infancy research. For example, Warlaumont et al. (2021) 
documented everyday auditory experiences of infants. They found that infants seek out 
vocal responses from adults similar to how animals forage for resources. This parallel 
between vocal exploration and foraging dynamics offers opportunities to generate novel 
hypotheses about learning in infants. Similarly, Smith and colleagues used head cameras 
and eye trackers to document infants’ everyday visual experiences (J. E. Smith & Pinter-
Wollman, 2021). As sensorimotor development progresses, infants’ interactions with 
their visual environment change, granting them access to novel experiences; referred to 
as ‘curriculum for learning’. The authors hypothesize that infant learning is optimized for 
the continuously changing visual environment. Computing environmental statistics can 
advance developmental research in similar ways as documenting the early environment has 
advanced infancy research. 
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Bridging theoretically- and empirically-driven approaches to studying environmental 
exposures

Our framework supports both theoretically-driven (top-down) and empirically-
driven (bottom-up) approaches to studying environmental exposures. Theoretically-driven 
approaches derive variables and constructs of environmental exposures from theory. 
Empirically-driven approaches derive them from empirical studies. Sometimes, theoretically 
derived constructs are too broad and unspecific to capture nuances of environmental 
exposures (Pollak & Smith, 2021). The extent to which this is the case depends on the 
specificity of the theory. Ideally, theory development and empirical studies take turns and 
refine each other. Bringing theoretically specified constructs and empirical studies exploring 
these constructs together can accelerate scientific progress. Our framework can help on 
both ends. It aids theory development by inviting precision about definitions of constructs 
and their formalizations. But it also offers tools to realize these different statistical definitions 
in empirical studies. With results from those studies, we can compare and refine existing 
constructs of environmental exposures.    

Limitations
Our framework is only a starting point to compute environmental statistics of 

stability and change. In some cases, it might be difficult to interpret the numeric values of 
individual statistics. What does an entropy of 0.95 tell us about unpredictability without 
comparing it against other regions or individuals? To be able to interpret these statistics we 
first need to compute them more regularly and in different contexts (e.g., samples, time 
scales, countries). A database that collects the values of these statistics (see ‘A database of 
environmental statistics’) can helps us to organize them. Such a database would also make 
it easier to compare environmental statistics across contexts and to self-reported measures 
of relevant constructs (e.g., unpredictability). In the long-term this may allow us to interpret 
the values of individual statistics. Along the way, we might also gain some insight into how 
objective measures of environmental constructs, such as harshness and unpredictability, 
relate to subjective perceptions of these constructs (Bartels, 2002). 

Regularly computing environmental statistics can also help us to explore the different 
adaptive challenges organisms face for different types of unpredictability. For example, we 
have considered high absolute autocorrelation and color of noise as more predictable than 
lower values. However, high negative autocorrelation and color of noise may influence 
individuals quite differently than high positive values. High negative values indicate 
predictable oscillations between high and low values of, for example, harshness. High positive 
values indicate long runs of above or below average conditions. An individual exposed to 
the former can predict environmental conditions in the near future well, experiencing little 
unpredictability. At the same time, she also has to cope with those drastic fluctuations 
in harshness. Being aware of these differences and empirically exploring how they shape 
development can deepen our understanding of how organisms adapt to unpredictability. 

Our statistical formalizations are simple and do not cover more advanced time series 
modeling approaches. Rather than extracting individual statistics from time series data, as 
we do, these models can be used to test hypotheses about how the data change across 
time. For example, Jebb et al. offer a beginner-friendly tutorial on time series analysis in 
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psychological research and provide pointers to further, more advanced reading (Jebb et 
al., 2015). Applying time series modeling to developmental research may help us answer 
research questions that we cannot answer with our current methods. However, successfully 
applying time series modeling to developmental questions can be challenging. Haslbeck and 
Ryan address such challenges in the study of emotion development (Haslbeck & Ryan, 2021). 
They focus on model misspecification and sampling frequency. A misspecified model does 
not include all possible dynamics and variables that have produced the data. Every model 
is misspecified but the degree and consequences vary. A good model includes the most 
essential dynamics and variables and advances our understanding of the data generating 
process. Sampling frequency refers to the timescale at which the data are measured (e.g., 
seconds, minutes, hours, or days). The authors simulate individual trajectories of emotion 
development across the span of days and apply different sampling frequencies (ranging from 
6 seconds to 90 minutes) and models. They show that even a misspecified model applied 
to undersampled data can recover global dynamics of emotion development. Future work 
may explore whether these insights also translate to data sampled over weeks, months, and 
years. Insights from such work may help us to assess some of the challenges of applying time 
series modeling to developmental data. 

One of the biggest factors constraining the feasibility of our framework and time 
series models, is the length of available time series data. We have recommended a 
minimum of around 20 repeated measures to extract environmental statistics. However, 
reaching this number can be challenging. Although ideally practical limitations should 
not dictate how we conduct science, they present real barriers. Fortunately, with calls for 
more collaborative science on the rise, increasing incentives to share data collected from 
participants, and the availability of public environment-level data (e.g., crime records), we 
see exciting opportunities ahead for systematically quantifying environmental stability and 
change across human development.
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6.1 Outlook

As part of this dissertation, I have presented central tenets, insights, and predictions 
from existing models of sensitive period evolution. I have contributed to this literature 
by developing two models of the evolution and development of sensitive periods. These 
models extend previous models that assume incremental and irreversible development 
in two ways: the first model explores the evolution of sensitive periods when organisms 
experience variation in the reliability of cues; the second model explores variation in the 
environmental state across ontogeny. To facilitate synergies between such models and 
empirical data, I have also developed a framework for studying environmental statistics 
across development. This is the third (and methodological) contribution of this dissertation.

As a whole, my dissertation contributes to scientific consilience. Consilience 
means the “linking of facts and facts-based theory across disciplines to create a common 
groundwork of explanation” (E. O. Wilson, 1999). The term ‘consilience’ dates back to the 
19th century when it was coined by William Whewell (Whewell, 1840). But scientific inquiry 
that transcends disciplines is rare, even today. Being an interdisciplinary researcher is often 
not rewarded by existing incentive structures in science; journals and grant committees 
often expect highly specialized work within specific disciplines (Bromham et al., 2016). As a 
result we tend to conduct science in isolated silos, where the same ‘facts’ coexist within the 
confines of the ideas and languages of different disciplines, each with unique assumptions 
and methodologies (Lim, 2016). My work bridges different methodologies (theory and 
empirics) and different disciplines (biology and psychology). 

The models presented here contribute towards an Integrative theoretical 
framework of the evolution and development of sensitive periods. They provide novel 
theoretical insights, generate empirical predictions, and pave the way for future models. 
My computational framework can help to consolidate these insights with empirical data. 
Patterns derived from models such as those developed in this dissertation can be compared 
against environmental statistics from different species and environmental dimensions. The 
framework also functions as a platform for organizing statistical definitions of environmental 
stability and change from different empirical studies and disciplines. 

In what follows, I will discuss how evolutionary thinking can inform developmental 
research, what insights I have gained about the development of sensitive periods from 
modelling their evolution, and the potential of my computational framework to integrate 
ideas and findings across methods, data, and disciplines. 

6.2 Why evolutionary thinking is useful

Dutch biologist and ethologist Niko Tinbergen proposed a foundational framework for 
explaining any behavior or trait (Tinbergen, 1963). He argued that a complete understanding 
of behavior requires asking four questions, each providing complementary insights: 
How does the behavior develop, what is its underlying mechanism (i.e., its physiological 
instantiation), why did it evolve, and why is it adaptive? Typically, answers related to 
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development and mechanism (questions 1 and 2) are referred to as proximate (‘how’) 
explanations, whereas answers to questions about evolution and function (questions 3 and 
4) are considered ultimate (‘why’) explanations. However, the boundaries between these 
categories are blurry. For example, we know that evolution and development depend on 
each other. Over evolutionary timescales, natural selection shapes developmental systems, 
which allow organisms to adapt to their environment across development (Frankenhuis, 
Panchanathan, et al., 2019). This results in phenotypic variation, which functions as a basis 
for natural selection in subsequent generations. 

A recent article has proposed to view evolution, development, and mechanism of a 
behavior or trait as a continuum of causes, which operate on different timescales (Bergman 
& Beehner, 2022). Adopting this updated framework, my models advance our understanding 
of how environmental conditions over evolutionary time have shaped levels of plasticity 
across development. The presence of sensitive periods indicates that over evolutionary 
timescales changes in plasticity across ontogeny were adaptive. Although models like mine 
typically do not directly provide insights into how plasticity is instantiated, they can inform 
mechanism.

Examples of this already exist for other models. For example, the idea of predictive 
adaptive responses (‘external PAR’) traditionally suggests that early-life stress predicts 
similarly harsh environmental conditions later in life and that organisms adjust their 
development accordingly. Evolutionary modelling has shown that under some conditions 
early-life stress more likely predicts an individual’s future internal somatic decline and that 
the individual adjusts to this decline instead (‘internal PAR’) (Nettle et al., 2013, 2014). 
Specifically, we would expect external PARs when environmental conditions are highly 
correlated across development and internal PARs when they are not (Frankenhuis et al., 
2018). These predictions have received empirical support across various species, thus 
providing insights into how animals respond to different conditions (Berghänel et al., 2016; 
Chua et al., 2017; Douhard et al., 2016; Hartman et al., 2017). 

Sometimes evolutionary explanations and theory are disregarded because they are 
said to have limited applied value (see e.g., Sunstein, 2022). It is true that evolutionary 
theory does not provide us directly with solutions to undo trauma from early-life adversity 
or to avoid societally undesirable behaviors, such as risk-taking or impulsivity. However, 
evolutionary theories highlight the places where we can look for such solutions. For different 
environmental conditions and assumptions, they describe the patterns that we would expect 
to observe in behavior and development (Frankenhuis & Walasek, 2020). For example, 
evolutionary modelling has identified conditions in which we might expect individuals to 
act impulsively (Fenneman & Frankenhuis, 2020). Such work has applied value. To design 
appropriate interventions, we first need to know when and why such behaviors occur. 

6.3 Insights from modelling the evolution and development of sensitive periods

My models have provided novel insights into the evolution and development of 
sensitive periods. My first model shows that, when the reliability of cues increases across 
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ontogeny, sensitive periods can evolve at later developmental stages (Chapter 3) (Gee, 2022; 
Walasek et al., 2021). When cue reliability decreases across ontogeny, sensitive periods only 
evolve at the onset of development. Overall, natural selection appears to have adapted 
levels of plasticity to track the reliability of cues. These patterns are qualitatively similar 
across different simulated study paradigms for quantifying plasticity. This suggests that 
empirical patterns of plasticity might be comparable across different experimental designs. 
My second model shows that, when cue reliability is constant across ontogeny but the 
environmental state fluctuates, sensitive periods can occur at the onset, midway through, 
and even towards the end of ontogeny (Chapter 4) (Walasek et al., 2022). This finding 
contrasts findings from previous models of sensitive period evolution in which plasticity 
often reaches zero, and never increases towards the end of ontogeny. Regardless of when 
during ontogeny plasticity peaks, organisms always retain residual plasticity late in ontogeny 
when the environment fluctuates. My results thus suggest, that critical periods, after which 
plasticity reaches zero, are unlikely to be favored in fluctuating environments. 

The models presented here and their predecessor (Panchanathan & Frankenhuis, 
2016) form a family of models of incremental and irreversible development. Together, 
they establish links between an organism’s evolutionary ecology (e.g., constant or varying 
environmental states) and expected patterns of sensitive periods (Table 6.1). Each model 
on its own explores sensitive periods when organisms can only gradually and incrementally 
develop phenotypes. In a way, the whole family of models also takes an incremental 
approach to studying sensitive periods, as each model only differs from the others in one 
aspect. This allowed me to identify how each additional assumption shapes patterns of 
sensitive periods. Currently, I have not yet developed a model in which both cue reliability 
and the environmental state vary across ontogeny. This model would fill the empty cell in 
Table 6.1. This is a direction for further research.

I can aggregate findings across models to derive predictions about sensitive periods. 
For example, Table 6.1 suggests under what environmental conditions we may expect to 
observe peaks in plasticity at later developmental stages, as well as critical periods. When 
environmental conditions only vary between generations, and both the environmental 
state and cue reliability are constant across an organism’s lifespan, we likely will not 
observe peaks in plasticity beyond early life. Across models, peaks in plasticity at later 
developmental stages are common. However, the reasons for why they occur differ. We 
may observe peak-plasticity later in development when organisms use cues that increase 
in reliability. Alternatively, plasticity may peak at later stages when the environmental state 
fluctuates and early experiences violate organisms’ expectations at birth. In Chapter 4, I 
have discussed other models that produce peaks in plasticity at later stages when assuming 
unconstrained and reversible development. 
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Constant

Sensitive periods at the onset of ontogeny 
(Frankenhuis & Panchanathan, 2011b; 
Panchanathan & Frankenhuis, 2016)

Often critical periods 

Sensitive periods at the onset and midway 
through ontogeny (Chapter 3; Walasek et al., 
2021)
 
Only critical periods 

Varying

Sensitive periods the onset, midway through, 
and even towards the end of ontogeny 
(Chapter 4; Walasek et al., 2022)
 
No critical periods 

Table 6.1 Overview over patterns of sensitive periods. Individual cells describe patterns of sensitive periods that 
emerged from models assuming incremental and irreversible development. Rows indicate whether the model 
assumes a constant or varying environmental state across ontogeny. Columns indicate whether the models assume 
constant or varying cue reliability across ontogeny. 

Across models, we find that critical periods are often favored when environmental 
conditions are stable within an organism’s lifespan but not when they fluctuate. In stable 
environments, the prevalence of critical over sensitive periods may depend on whether 
organisms have access to highly reliable cues at any point during ontogeny. When this is the 
case, plasticity will likely always reach zero by the end of development, as there is no need 
for maintaining it. These insights produce several testable, empirical predictions which I 
have discussed in detail in Chapters 3 and 4. 

More generally, my findings contribute to two current topics in developmental 
research and biology. First, my models enrich our understanding of sensitive periods in 
adolescence. Empirical work has uncovered different aspects of brain and behavioral 
development that are shaped during adolescence (Blakemore & Mills, 2014; Fuhrmann et 
al., 2015; Knoll et al., 2016). Despite this progress we know little about the exact onset, 
duration, and offset of sensitive periods during this window (Fuhrmann et al., 2015; Gee, 
2022). It remains an open question whether plasticity is only heightened during adolescence, 
constantly elevated across childhood and adolescence, or continuously decreasing across 
childhood and adolescence (Fuhrmann et al., 2015). For specific traits we may be able to 
distinguish these three models with controlled experiments, measuring plasticity in the same 
individuals in childhood, adolescence, and adulthood. Still, this would tell us little about why 
different traits show different patterns of plasticity. My models can identify conditions that 
may produce these different patterns, thus steering future empirical studies. They may do 
so by generating new empirical hypotheses or by providing insights into existing, empirical 
patterns. For example, a continuous decline of plasticity across childhood and adolescence 
may be likely in traits for which the brain expects highly reliable inputs early in life. 

Second, my models may provide insights into how organisms cope with fluctuating 
environmental conditions. This topic is of great relevance given the challenges organisms 
face due to climate change. One of the most urgent questions is how organisms adapt 
to novel environmental conditions, as this will likely determine their chances of survival 
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(Jury et al., 2019; Snell-Rood et al., 2018). My model of fluctuating environments cannot 
answer this question. I have not explored conditions that are unknown to developing 
organisms. However, my model does provide insights into organisms’ capacity to adjust to 
different rates of environmental fluctuations (Trimmer et al., 2019; Winkler et al., 2014). 
If the adult lifespan is long relative to ontogeny and one state of the environment is more 
likely, plasticity is zero across all of ontogeny. This is true for all rates of environmental 
fluctuations. However, populations whose adult lifespans are short or moderately long 
relative to ontogeny, are highly plastic at the end of ontogeny when environments fluctuate. 
If we assume that phenotypic adaptations to known environments are partially useful in 
novel environments, my model could provide coarse insights into how different species 
may deal with such novel conditions. Populations with a long adult lifespan may do well 
if the adaptions to the more common environmental state are also useful for novel states, 
and poorly otherwise. Populations with shorter adult lifespans may benefit from enhanced 
plasticity if environmental conditions late in ontogeny predict the adult environment. 

6.4 Future ideas for modelling the evolution and development of sensitive 
periods

Across this dissertation, I have noted various limitations of evolutionary models in 
general but also of my specific models. Here, I will discuss future ideas for synthesizing 
existing findings and extending current models. To start with, I would like to synthesize 
current findings from studying the evolution and development of sensitive periods. There 
already exist review papers that provide an excellent overview of these models (Fawcett & 
Frankenhuis, 2015; Frankenhuis & Fraley, 2017; Walasek et al., 2021). What I have in mind is 
a higher resolution version of Table 6.1 that incorporates the models assuming incremental 
and irreversible development, as well as models that do not make these assumptions (e.g., 
Fischer et al., 2014; Stamps & Krishnan, 2014b). By higher resolution I do not mean a higher 
quantity of models reviewed. Rather, I would like to closely look at the consequences of 
different assumptions and explored parameter ranges. In its current form, Table 6.1 masks 
the underlying parameter ranges of each of the models, such as the range of explored priors, 
cue reliability values, cue reliability patterns, adult lifespans, and rates of environmental 
fluctuations. A higher resolution version of Table 6.1, which incorporates these nuances, may 
be useful to identify patterns across models and highlight connections that were previously 
not visible. Such an overview could provide a valuable resource for generating predictions 
for subsequent testing in empirical studies, for instance, of experimental evolution in insects 
(Dunlap & Stephens, 2009, 2016; English & Barreaux, 2020). 

The next step would be to extend my current models. In Chapters 3 and 4 I have 
discussed various possibilities, such as exploring a variable length of ontogeny, reversible 
development, a continuum of environmental states (opposed to two discrete states), or 
fitness as a function of fertility and mortality (opposed to just fertility). I have also discussed 
the idea to explicitly incorporate known proximate mechanisms of plasticity. At present, 
there are two specific future directions that I find most interesting. First, I would like to 
explore how sensitive my findings are to the specific assumptions I have made. For each 
model in Table 6.1, I would like to explore patterns of sensitive periods as a result of changing 
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one assumption at a time. For example, how would the cells of Table 6.1 differ if all models 
assumed reversible development? How would they differ, if organisms might die throughout 
ontogeny when they are poorly matched to their environments? Exploring the consequences 
of these assumptions would be in line with my incremental approach to studying sensitive 
periods. Knowing when my findings break down and when they are robust can deepen our 
understanding of sensitive periods across species with different life histories. The second 
direction involves more drastic changes in the assumptions of my models. 

All of the previous models have assumed that organisms are born ‘knowing’ the 
optimal phenotypic response to different environmental states. This implies that natural 
selection has equipped organisms with phenotypic responses for different environmental 
conditions. These responses may be genetically encoded and may themselves be the result 
of natural selection over previous generations. I will refer to these responses as ‘innate’ in the 
sense of being present at birth and encoded via genes (see Mameli & Bateson, 2011; Samuels, 
2004 for different meanings of ‘innateness’). Such innate responses can be adaptive if the 
range of possible environmental states is small or fixed across generations. If instead this 
range is very large or variable across generations, organisms may need to learn the adaptive 
response based on the consequences of their past actions. Learning can broadly be defined 
as the acquisition of knowledge, abilities, or skills as a result of experience (Frankenhuis, 
Panchanathan, et al., 2019). Trial-and-error or reinforcement learning represents one type 
of learning by which organisms may acquire the adaptive phenotypic response (Frankenhuis, 
Panchanathan, et al., 2019; Moczek et al., 2010; Snell-Rood, 2012). Across all animal taxa, 
such learning from successes and failures of past behaviors is common in the development 
of many behavioral traits (Snell-Rood, 2012). Future modeling could explore under which 
environmental conditions natural selection might favor such learning of adaptive phenotypic 
responses versus equipping organisms with innate, adaptive responses. 

The extent to which traits develop through innate or learned responses may depend 
on the range and variability of environmental conditions across generations, as well as 
conditions within an organism’s lifespan. If the environment is stable (relative to the organism’s 
lifespan) and cues are reliable, phenotypic responses might be instantiated through innate 
responses. If the environment fluctuates frequently, natural selection might favor learning 
of adaptive responses (Fawcett et al., 2014). Such learning may be especially beneficial 
when organisms encounter novel environmental conditions not experienced by previous 
generations. Learning likely increases the capacity for adapting to these novel conditions, 
benefitting organisms’ fitness. Another possibility is a combination of innate and learned 
responses. Both learned and innate phenotypic responses may depend on the organism’s 
ability to accurately sense cues in its environment. However, innate responses might have 
a smaller margin of error. Suppose an organism is developing phenotypic specializations for 
a world in which predator density varies across ontogeny. If cues reliably predict predator 
density, they may induce adaptive innate phenotypic adjustments for different density 
levels. If cues are poor and it is costly to induce the wrong adjustments, plasticity may not be 
favored across ontogeny (e.g., Panchanathan & Frankenhuis, 2016). However, if organisms 
can learn the adaptive phenotypic response through interactions with their environment, 
they may develop an appropriate phenotype despite poor cues. Thus, organisms might fall 
back on learning when they fail to infer current conditions based on cues. Although learning 
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may increase phenotype-environment match, it comes with costs (Snell-Rood & Steck, 
2019). Exploring different phenotypes and processing environmental feedback costs time 
and energy, increasing, for example, the risk of predation. Using modeling, we can explore 
under which conditions the benefits of learning outweigh these costs. 

6.5 Bridges across methods, data, and disciplines

In Chapter 5, I have presented a computational framework for studying environmental 
statistics across development. The framework highlights different ways in which patterns 
of environmental stability and change may be defined and computed. In this way it can 
foster integration and comparability of findings across studies. I have also outlined several 
ways in which my framework can contribute towards consilience, the integration of all 
sciences. The framework offers a platform for integrating methods from various fields, such 
as biology, ecology, or psychology to quantify stability and change. Housing these disciplines 
under one roof will make it easier to learn from and with each other. The resulting toolkit 
of methods can be applied to different types of data, such as repeated measures collected 
from individuals (‘individual-level’ data) or longitudinal data from their surrounding ecology, 
such as public crime records or access to health care facilities (‘environment-level’ data). I 
have also shown how environmental statistics computed for environment-level data may 
be linked to individuals through the locations they have lived in. The framework may also 
strengthen synergies between empirical and theoretical work. Suppose I have already 
synthesized patterns of sensitive periods from existing models in a version of Table 6.1 
that also includes the explored parameter ranges. I could use the values of environmental 
statistics computed with my framework to highlight specific cells in that table. In this way 
I could explore patterns of sensitive periods in environmental conditions that match those 
of the environmental dimension, timescale, and species of interest. From these theoretical 
patterns I can derive empirical predictions tailored to a specific study organism and subject.

I concluded Chapter 5 by outlining opportunities for systematically quantifying 
environmental stability and change across human development. I hope that my framework 
will be part of this endeavor. A distant vision that I have for my framework, is for it to become 
a public tool, space, and resource for developmental research. My framework could grow 
into a platform that functions as a tool for researchers to compute environmental statistics 
of stability and change and as a space to publicly store the resulting values. Ideally, the 
platform would offer ways to visualize the resulting statistics and to aggregate them across 
different samples which quantify the same environmental dimension. Other researchers 
could use the platform as a resource to look up environmental statistics relevant for their 
own research questions. To facilitate the linking of environment-level and individual-level 
data, I envision that those statistics should be connected to a map. Suppose that you have 
already filtered the database based on keywords related to your specific environmental 
dimension of interest and species. Now imagine, viewing a map of the world. You can click 
on a specific country and select statistics of stability and change for that country. You can 
select a time window and zoom in further to view statistics for individual cities. Within cities 
you can filter neighborhoods based on zip codes. The resulting statistics can then be directly 
linked to individuals based on the locations they have lived in, allowing us to quantify their 
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environmental exposures across time and space. The idea for such a platform is inspired by 
existing repositories, such as the NYC Open Data project4. Developing this platform would 
take years and it would take even longer to fill it with data. However, I am convinced that its 
benefits would greatly outweigh its costs. Such a platform has the potential to be a tool for 
connecting different disciplines and methodologies, a space for sharing data and findings, 
and an open resource for researchers and the public. 

6.6 Concluding remarks

“The belief in the possibility of consilience beyond science and across the great 
branches of learning is not yet science. It is a meta-physical world view, and a minority one 
at that, shared by only a few scientists and philosophers. It cannot be proved with logic from 
first principles or grounded in any definitive set of empirical tests, at least not by any yet 
conceived. It’s best support is no more than an extrapolation of the consistent past success 
of the natural sciences. Its surest test will be its effectiveness in the social sciences and 
humanities. The strongest appeal of consilience is in the prospect of intellectual adventure 
and, given even modest success, the value of understanding the human condition with 
a higher degree of certainty.” Edward O. Wilson (1999) (1999). Consilience: The Unity of 
Knowledge.

I chose this brief excerpt from Wilson’s book ‘Consilience: The Unity of Knowledge’ 
(E. O. Wilson, 1999) because it captures what I tried to convey in this Discussion. I hope 
that, nowadays, the belief in the possibility of consilience is not only held by a minority of 
scientists. The past years have seen immense technological progress in our ability to acquire, 
store, and handle large scale data, as well as gradual reforms in science, promoting theory 
development and collaborative research. These circumstances make now a unique time to 
do interdisciplinary research. The studies presented in this dissertation attempt to connect 
different disciplines and methodologies. I often relied on methods and ideas that are more 
common in the life or natural sciences than in the social sciences. Based on my experiences 
of applying these methods and ideas within the social sciences, I found that integrating 
social and natural sciences adds novel perspectives to understanding development. Most 
importantly, it creates opportunities for science to progress and consilience to grow. 

4 https://opendata.cityofnewyork.us/
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Appendix 1 – Chapter 3
Additional plots for 20 time periods

Figure A1.1 Plasticity across ontogeny – maximal cue reliability of 0.75. The fitness rewards for correct 
specializations and fitness penalties for incorrect specializations are linear across all panels. The prior probability 
of E1 varies across columns and the cue reliability pattern varies across rows. Each panel represents T experimental 
‘twin studies’, one for each t ϵ {1, T}. Outcomes of each twin study are marked by a grey diamond and a black 
circle. For each study we simulate 10,000 pairs of identical twins who follow the optimal policy and track their 
development across ontogeny. The environmental state is fixed to E1. For each pair of twins, one individual (the 
‘focal’) receives a set of environmental cues across ontogeny simulated from the prior probability and cue reliability 
pattern. Its clone receives the same cues until the moment of separation in time period t after which it begins to 
receive reciprocal, opposite cues, which lasts until the end of ontogeny. The vertical axis within each panel depicts 
the phenotypic distance between focal individuals and their clones. The horizontal axis depicts the time period in 
which pairs of twins were separated. The phenotypic distance at the end of ontogeny between a focal individual 
and its clone corresponds to the Euclidean distance between their phenotypes. Grey lines and diamonds depict 
‘absolute’ phenotypic distance, the average distance between the 10,000 focal individuals and their clones at the 
end of ontogeny (ranging from 0 to 20√2, scaled to a 0 to 1 range). Black lines and circles depict ‘proportional’ 
distance, the average absolute distance divided by the maximum possible distance following separation. 
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Here, we additionally show distributions of mature phenotypes and compare the 
fitness of the optimal policy with the fitness of two non-plastic strategies, a generalist and 
a specialist, to get a sense of whether and by how much the optimal policy outperforms 
simpler strategies. We do not discuss results from these analyses in the main text, as the 
results are qualitatively similar to those of a model with fixed cue reliabilities (Panchanathan 
& Frankenhuis, 2016). The main text focuses on those results that are qualitatively different 
when cue reliabilities are variable rather than fixed across ontogeny.  
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Figure A1.2 Distributions of mature phenotypes. The fitness rewards for correct specializations and fitness penalties 
for incorrect specializations are linear across all panels. The prior probability of E1 varies across columns and the 
cue reliability pattern varies across rows. Each panel represents a simulation study. For each study we simulate 
10,000 organisms who follow the optimal policy and track their development across ontogeny. The environmental 
state is fixed to E1. Each triangle plots the distribution of phenotypes at the end of ontogeny. The number of time 
periods waited, time periods specialized towards P1 and time periods specialized towards P0 make up a phenotype. 
The position of a circle indicates the composition of mature phenotypes. The left and right vertices represent 
organisms that only specialized towards P1 and P0, respectively. The top vertex represents organisms that only 
waited. Circles on the outer boundary indicate a mixture of two phenotypic decisions, while circles within the 
triangle indicate a mixture of all three decisions. The area of a circle is proportional to the fraction of simulated 
organisms that developed the same phenotype. 
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Figure A1.3 Fitness of mature phenotypes. The fitness rewards for correct specializations and fitness penalties 
for incorrect specializations are linear across all panels. The prior probability of E1 varies across columns and the 
cue reliability pattern varies across rows. Each panel represents a simulation study. For each study we simulate 
10,000 organisms who follow the optimal policy and track their development across ontogeny. For half of the 
population the environmental state is fixed to E0 and for the other half to E1 (5,000 organisms per environment).We 
then compare the average fitness across organisms following the optimal policy (‘O’; center, dark-grey bar) to two 
non-plastic strategies: generalists (‘G’; right, black bar) and specialists (‘S’; left, light-grey bar). Generalists always 
specialize halfway towards each phenotypic target, while specialists specialize towards the phenotypic target that 
is more likely according to the prior. If the prior is 0.5 organisms choose a target at random. Bars indicate the 
expected fitness difference from baseline (marked as 0) of the three strategies, normalized to range between -1 
and 1 with 1 indicating a perfect match to the environment. Fitness differences can be negative when mismatch 
penalties exceed rewards for correct matches.  
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Figure A1.4 Plasticity in phenotype and posterior estimate. The fitness rewards for correct specializations and 
fitness penalties for incorrect specializations are linear across all panels. The prior probability of E1 varies across 
columns and the cue reliability pattern varies across rows. Each panel represents T experimental ‘twin studies’, 
one for each t ϵ {1, T}. Black circles correspond to the phenotype-and-posterior and gray bars to the posterior-only 
model. For each study we simulate 10,000 pairs of identical twins who follow the optimal policy and track their 
development across ontogeny. The environmental state is fixed to E1. For each pair of twins, one individual (the 
‘focal’) receives a set of environmental cues across ontogeny simulated from the prior probability and cue reliability 
pattern. Its clone receives the same cues until the moment of separation in time period t after which it receives 
one reciprocal, opposite cue, and then continues normal development with its twin until the end of ontogeny. The 
vertical axis within each panel depicts the difference between focal individuals and their clones in the phenotype-
and-posterior model and the posterior-only model. The horizontal axis depicts the time period in which pairs of 
twins were separated. Black lines and circles depict the average Euclidean distance between the 10,000 focal 
individuals and their clones after their separation (scaled to a 0 to 1 range), divided by the maximum possible 
distance attainable within one time period. Gray bars correspond the average absolute distance in posteriors 
between those same simulated organisms after their separation.
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Figure A1.5 Gradients of phenotypic plasticity and plasticity in posterior estimates. The fitness rewards for correct 
specializations and fitness penalties for incorrect specializations are linear across all panels. The prior probability 
of E1 varies across columns and the cue reliability pattern varies across rows. Each panel represents T experimental 
‘twin studies’, one for each t ϵ {1, T}. Black lines and circles correspond to the phenotype-and-posterior and gray 
lines and diamonds to the posterior-only model. For each study we simulate 10,000 pairs of identical twins who 
follow the optimal policy and track their development across ontogeny. The environmental state is fixed to E1. For 
each pair of twins, one individual (the ‘focal’) receives a set of environmental cues across ontogeny simulated from 
the prior probability and cue reliability pattern. Its clone receives the same cues until the moment of separation 
in time period t after which it begins to receive reciprocal, opposite cues, which lasts until the end of ontogeny. 
Within each panel we compute the difference between focal individuals and their clones in the phenotype-and-
posterior model and the posterior-only model. In the phenotype-and-posterior model this difference is the average 
Euclidean distance between the 10,000 focal individuals and their clones at the end of ontogeny (ranging from 0 to 
20√2, scaled to a 0 to 1 range), divided by the maximum possible distance following separation. In the posterior-
only model this difference is the average absolute distance in posteriors between those same simulated organisms 
at the end of ontogeny. The horizontal axis depicts the time period in which pairs of twins were separated. The 
vertical axis within each panel depicts the gradients of the resulting plasticity trajectories from the phenotype-and-
posterior and the posterior-only model. 
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Dynamic programming equations

a. Environmental variables and state of an organism

Environmental variable Explanation
E0 Environment 0
E1 Environment 1
P0 Optimal phenotype for E0

P1 Optimal phenotype for E1

C0 Cue indicating E0

C1 Cue indicating E1

T End of ontogeny, i.e., 20 for the results in the main text

The state of an organism is characterized by a 5-tuple (Dt , y0, y1, yw , t). In each time 
step (from 1 until T) organisms first sample a cue and then make a phenotypic decision. Dt 
denotes the sequence of cues that an organism has sampled by time period t. 

Variable Explanation
Dt Dt = {x1, x2, ... xt,}, where x1, x2 up until xt denote the kind of cue (C0 or C1 ) received in 

each time period
y0 Number of specialization steps towards P0

y1 Number of specialization steps towards P1

yw Number of time steps spent waiting
t Current time period in ontogeny
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b. Bayesian inference 

Organisms use Bayesian inference to update their initial prior estimate of the 
environmental state based on the sampled cues.

Parameters for Bayesian 
inference

Explanation

P(E0) Prior probability of E0

P(E1) Prior probability of E1

P(C0,t|E0) Cue reliability; conditional probability of receiving C0in E0 at t 
P(C1,t|E1) Cue reliability; conditional probability of receiving C1 in E1 at t
P(E0|Dt) Posterior probability of E0 after having sampled Dt

P(E1|Dt) Posterior probability of E1 after having sampled Dt

According to the laws of probability it holds that:

P(E0) + P(E1) = 1

P(E0|Dt) + P(E1|Dt) = 1

P(C0,t|E0) + P(C1,t|E0) = 1

P(C1,t|E1) + P(C0,t|E1) = 1

Further, we assume that P(C0,t|E0) = P(C1,t|E1).

We assume that organisms are Bayesian learners, using the fixed distribution of 
patches as the prior estimate of the environmental state and the time-dependent cue 
reliabilities to update these estimates. To see how this works, suppose an organism has 
sampled a specific sequence of cues Dt=3 = {x1 = C0, x2= C1, ... x3= C0}.

According to Bayes’ theorem, its posterior estimate after the first cue is: 

174 

b) Bayesian inference  

Organisms use Bayesian inference to update their initial prior estimate of the environmental state 
based on the sampled cues. 

 
Parameters for 

Bayesian inference 
Explanation 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) Prior probability of 𝐸𝐸𝐸𝐸0 
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) Prior probability of 𝐸𝐸𝐸𝐸1 

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0) Cue reliability; conditional probability of receiving 𝐶𝐶𝐶𝐶0 in 𝐸𝐸𝐸𝐸0 at 𝑡𝑡𝑡𝑡  
𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1) Cue reliability; conditional probability of receiving 𝐶𝐶𝐶𝐶1 in 𝐸𝐸𝐸𝐸1 at 𝑡𝑡𝑡𝑡 
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) Posterior probability of 𝐸𝐸𝐸𝐸0 after having sampled 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) Posterior probability of 𝐸𝐸𝐸𝐸1 after having sampled 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 

 

   

 According to the laws of probability it holds that: 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) = 1 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) = 1 

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0� + 𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0� = 1 

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1� + 𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1� = 1 

Further, we assume that 𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0� =  𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1�. 

We assume that organisms are Bayesian learners, using the fixed distribution of patches as the prior 
estimate of the environmental state and the time-dependent cue reliabilities to update these estimates. 
To see how this works, suppose an organism has sampled a specific sequence of cues 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡 =
{𝑥𝑥𝑥𝑥1 = 𝐶𝐶𝐶𝐶0, 𝑥𝑥𝑥𝑥2 =  𝐶𝐶𝐶𝐶1, … 𝑥𝑥𝑥𝑥𝑡 =  𝐶𝐶𝐶𝐶0}. 

According to Bayes’ theorem, its posterior estimate after the first cue is:  

 

 

 
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐶𝐶𝐶𝐶0) =  

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) • 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0)
𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) • 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) +  𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸1) • 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐶𝐶𝐶𝐶0) = 1 −  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐶𝐶𝐶𝐶0) 

 

  

To compute the posteriors 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) after the whole sequence of cues, we have to 
reapply Bayes’ theorem for each cue using the previous posterior as the new prior. 

 

 

 

 

 

To compute the posteriors P(E0|Dt) and P(E1|Dt) after the whole sequence of cues, 
we have to reapply Bayes’ theorem for each cue using the previous posterior as the new 
prior.



164   |   Supplementary materials

c. Fitness functions

We denote the mature phenotype at the end of ontogeny by Ymat = (y0, y1, T).

Functions and constants Explanation
ϕ(Ymat) Expected, additive fitness reward at the end of ontogeny
ψ(Ymat) Expected, additive fitness penalty at the end of ontogeny
π(Ymat) Expected fitness at the end of ontogeny
π0 Baseline fitness
f(y) Mapping between phenotypic increments and fitness rewards (or penalties) 

Fitness consequences of phenotypic decisions are not accrued throughout ontogeny 
but only at the end of ontogeny. The fitness difference from baseline at the end of ontogeny 
corresponds to the total rewards for correct specializations minus penalties from incorrect 
specializations, where each correct increment results in a marginal gain and each incorrect 
increment results in a marginal penalty. We studied three mappings between correct (or 
incorrect) phenotypic development and fitness rewards (or penalties). 

Suppose a mature organism is in the following state at the end of ontogeny (Dt , y0, 
y1, yw , T) having sampled the cue sequence Dt and developed the mature phenotype Ymat = 
{y0, y1, T}. Developing organisms aim to maximize expected fitness at the end of ontogeny. 
Expected fitness π(Ymat) corresponds to the sum of expected rewards and penalties, in 
addition to the baseline fitness:

 

 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = (𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑇𝑇𝑇𝑇). 

 
Explanation 

) Expected, additive fitness reward at the end of ontogeny 
) Expected, additive fitness penalty at the end of ontogeny 
) Expected fitness at the end of ontogeny 

Baseline fitness 
Mapping between phenotypic increments and fitness rewards (or 
penalties)  

minus penalties from incorrect specializations, where 

).  

𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇) 
the cue sequence 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 and developed the mature phenotype 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = {𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1, 𝑇𝑇𝑇𝑇}. 

 at the end of ontogeny. Expected fitness  

𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 +  𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) +  𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡). 

s, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, throughout ontogeny. Its 
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) reflect the probabilities of being in either 

Thus, to compute rewards and penalties, we need to 

We denote the mapping from 
𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦), where 𝑦𝑦𝑦𝑦 can refer to both 𝑦𝑦𝑦𝑦0 and 𝑦𝑦𝑦𝑦1, and 

 

𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 
𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

 

 

- 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Formula Parameter settings to ensure that 
maximal rewards and penalties 

correspond to 𝑇𝑇𝑇𝑇 − 1  
 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝑦𝑦𝑦𝑦 - 

 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1)  

 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦 − 1) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1) − 1 

Suppose that an organism has sampled a specific sequence of cues, Dt, throughout 
ontogeny. Its posterior estimates P(E0|Dt=T) and P(E1|Dt=T) reflect the probabilities of 
being in either environmental state at the end of ontogeny. Thus, to compute rewards and 
penalties, we need to compute the expectation across both environmental states, weighted 
by how likely each state is as indicated by the posterior estimates at the end of ontogeny. We 
denote the mapping from phenotypic increments to rewards and penalties by f(y), where y 
can refer to both y0 and y1, and derive the following expressions for expected rewards and 
penalties: 

c) Fitness functions 
 
We denote the mature phenotype at the end of ontogeny by 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = (𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑇𝑇𝑇𝑇). 
 

Functions and 
constants 

Explanation 

𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) Expected, additive fitness reward at the end of ontogeny 
𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) Expected, additive fitness penalty at the end of ontogeny 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) Expected fitness at the end of ontogeny 
𝜋𝜋𝜋𝜋0 Baseline fitness 
𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Mapping between phenotypic increments and fitness rewards (or 

penalties)  
 
 
Fitness consequences of phenotypic decisions are not accrued throughout ontogeny but only at the 
end of ontogeny. The fitness difference from baseline at the end of ontogeny corresponds to the 
total rewards for correct specializations minus penalties from incorrect specializations, where 
each correct increment results in a marginal gain and each incorrect increment results in a 
marginal penalty. We studied three mappings between correct (or incorrect) phenotypic 
development and fitness rewards (or penalties).  
 
Suppose a mature organism is in the following state at the end of ontogeny (𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇) 
having sampled the cue sequence 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 and developed the mature phenotype 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = {𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1, 𝑇𝑇𝑇𝑇}. 
Developing organisms aim to maximize expected fitness at the end of ontogeny. Expected fitness  
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) corresponds to the sum of expected rewards and penalties, in addition to the baseline 
fitness: 
 

𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 +  𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) +  𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡). 
  
Suppose that an organism has sampled a specific sequence of cues, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, throughout ontogeny. Its 
posterior estimates 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) reflect the probabilities of being in either 
environmental state at the end of ontogeny. Thus, to compute rewards and penalties, we need to 
compute the expectation across both environmental states, weighted by how likely each state is as 
indicated by the posterior estimates at the end of ontogeny. We denote the mapping from 
phenotypic increments to rewards and penalties by 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦), where 𝑦𝑦𝑦𝑦 can refer to both 𝑦𝑦𝑦𝑦0 and 𝑦𝑦𝑦𝑦1, and 
derive the following expressions for expected rewards and penalties:  
 
 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 

𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇) • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 
 

 
Lastly, we present the three functional mappings between the realized phenotype and fitness 
rewards and penalties: 
 

Returns on fitness - 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Formula Parameter settings to ensure that 
maximal rewards and penalties 

correspond to 𝑇𝑇𝑇𝑇 − 1  
linear 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝑦𝑦𝑦𝑦 - 

diminishing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1)  

Lastly, we present the three functional mappings between the realized phenotype 
and fitness rewards and penalties:
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Returns on fitness - f(y) Formula Parameter settings to ensure that maximal 
rewards and penalties correspond to T - 1 

linear f(y) = y -

diminishing f(y) = α(1 - e-βy)
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Lastly, we present the three functional mappings between the realized phenotype and fitness 
rewards and penalties: 
 

Returns on fitness - 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Formula Parameter settings to ensure that 
maximal rewards and penalties 

correspond to 𝑇𝑇𝑇𝑇 − 1  
linear 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝑦𝑦𝑦𝑦 - 

diminishing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1)  

increasing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦 − 1) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1) − 1 

   

increasing f(y) = α(eβy - 1)

175 
 

𝜓𝜓𝜓𝜓 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = − 𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸0 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇 • 𝑦𝑦𝑦𝑦1 +  𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸1 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇 • 𝑦𝑦𝑦𝑦0  

 
Lastly, we present the three functional mappings between the realized phenotype and fitness 
rewards and penalties: 
 

Returns on fitness - 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Formula Parameter settings to ensure that 
maximal rewards and penalties 

correspond to 𝑇𝑇𝑇𝑇 − 1  
linear 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝑦𝑦𝑦𝑦 - 

diminishing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1)  

increasing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦 − 1) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇 − 1

𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇−1) − 1 

   

d. Optimal decisions 

In each time period, a developing organism can choose one of three options: 
increment one step on P0, one step on P1 or wait and forgo specialization. It chooses the 
option with the highest expected fitness at the end of ontogeny at t = T. In the event of a tie 
between two or all of the options the organism chooses amongst the current alternatives 
with equal probability. 

F(Dt , y0, y1, yw , t, T) denotes the maximum expected fitness that can be attained as 
a result of decisions made between t and T, when the organism’s current state after the last 
cue sampled is (Dt , y0, y1, yw , T) and the organisms chooses option α, so that:

d) Optimal decisions  
 
In each time period, a developing organism can choose one of three options: increment one step 
on 𝑃𝑃𝑃𝑃0 , one step on 𝑃𝑃𝑃𝑃1or wait and forgo specialization. It chooses the option with the highest 
expected fitness at the end of ontogeny at 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇. In the event of a tie between two or all of the 
options the organism chooses amongst the current alternatives with equal probability.  
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) denotes the maximum expected fitness that can be attained as a result of 
decisions made between 𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑇𝑇, when the organism’s current state after the last cue sampled is 
(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇) and the organisms chooses option 𝑎𝑎𝑎𝑎, so that: 
 
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) = max

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎{0,1,𝑤𝑤𝑤𝑤}
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚 , where 

 
𝐹𝐹𝐹𝐹0 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0 + 1,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇), 
𝐹𝐹𝐹𝐹1 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1 + 1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇), 
𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 + 1, 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇). 
 
We apply backwards induction to solve the dynamic programming equation 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) 
for all 𝑡𝑡𝑡𝑡. We start with 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇: 
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) =  𝜋𝜋𝜋𝜋(𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑇𝑇𝑇𝑇). 
 
After calculating expected fitness at the end of ontogeny we continue by decrementing 𝑡𝑡𝑡𝑡.   For 
each 𝑡𝑡𝑡𝑡 < 𝑇𝑇𝑇𝑇 we compute the 𝑎𝑎𝑎𝑎, which maximizes 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇) in time period 𝑡𝑡𝑡𝑡.       
 
 
 
 

 

 

 

 

 

 

 

 

 

We apply backwards induction to solve the dynamic programming equation F(Dt , y0, 
y1, yw , t, T) for all t. We start with t = T: 

d) Optimal decisions  
 

on 𝑃𝑃𝑃𝑃0 , one step on 𝑃𝑃𝑃𝑃1
expected fitness at the end of ontogeny at 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇. 

 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) 
decisions made between 𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑇𝑇
(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇) and the organisms chooses option 𝑎𝑎𝑎𝑎, so that: 
 
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇) = max

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎{0,1,𝑤𝑤𝑤𝑤}
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚 , where 

 
𝐹𝐹𝐹𝐹0 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0 + 1,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇), 
𝐹𝐹𝐹𝐹1 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1 + 1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇), 
𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 + 1, 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇). 
 
We apply backwards induction to solve the dynamic 
for all 𝑡𝑡𝑡𝑡. We start with 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇: 
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) =  𝜋𝜋𝜋𝜋(𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑇𝑇𝑇𝑇). 
 

each 𝑡𝑡𝑡𝑡 < 𝑇𝑇𝑇𝑇 we compute the 𝑎𝑎𝑎𝑎, which maximizes 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,
 
 
 
 

 

 

 

 

 

 

 

 

 

 

After calculating expected fitness at the end of ontogeny we continue by decrementing 
t. For each t < T we compute the α, which maximizes F(Dt , y0, y1, yw , t + 1, T) in time period t.   
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Figure A1.6 Plasticity across ontogeny – opposite patch cues. The fitness rewards for correct specializations and 
fitness penalties for incorrect specializations are linear across all panels. The prior probability of E1 varies across 
columns and the cue reliability pattern varies across rows. Each panel represents T experimental ‘twin studies’, 
one for each t ϵ {1, T}. Outcomes of each twin study are marked by a grey diamond and a black circle. For each 
study we simulate 10,000 pairs of identical twins who follow the optimal policy and track their development across 
ontogeny. The environmental state is fixed to E1. For each pair of twins, one individual (the ‘focal’) receives a set 
of environmental cues across ontogeny simulated from the prior probability and cue reliability pattern. Its clone 
receives the same cues until the moment of separation in time period t after which it begins to receive cues 
indicating the opposite patch, which lasts until the end of ontogeny. The vertical axis within each panel depicts 
the phenotypic distance between focal individuals and their clones. The horizontal axis depicts the time period in 
which pairs of twins were separated. The phenotypic distance at the end of ontogeny between a focal individual 
and its clone corresponds to the Euclidean distance between their phenotypes. Grey lines and diamonds depict 
‘absolute’ phenotypic distance, the average distance between the 10,000 focal individuals and their clones at the 
end of ontogeny (ranging from 0 to 20√2, scaled to a 0 to 1 range). Black lines and circles depict ‘proportional’ 
distance, the average absolute distance divided by the maximum possible distance following separation.
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Figure A1.7 Plasticity across ontogeny - deprivation. The fitness rewards for correct specializations and fitness 
penalties for incorrect specializations are linear across all panels. The prior probability of E1 varies across columns 
and the cue reliability pattern varies across rows. Each panel represents T experimental ‘twin studies’, one for each 
t ϵ {1, T}. Outcomes of each twin study are marked by a grey diamond and a black circle. For each study we simulate 
10,000 pairs of identical twins who follow the optimal policy and track their development across ontogeny. The 
environmental state is fixed to E1. For each pair of twins, one individual (the ‘focal’) receives a set of environmental 
cues across ontogeny simulated from the prior probability and cue reliability pattern. Its clone receives the same 
cues until the moment of separation in time period t after which it begins to experience deprivation, meaning that 
cues from both environmental states are equally likely, which lasts until the end of ontogeny. The vertical axis within 
each panel depicts the phenotypic distance between focal individuals and their clones. The horizontal axis depicts 
the time period in which pairs of twins were separated. The phenotypic distance at the end of ontogeny between 
a focal individual and its clone corresponds to the Euclidean distance between their phenotypes. Grey lines and 
diamonds depict ‘absolute’ phenotypic distance, the average distance between the 10,000 focal individuals and 
their clones at the end of ontogeny (ranging from 0 to 20√2, scaled to a 0 to 1 range). Black lines and circles 
depict ‘proportional’ distance, the average absolute distance divided by the maximum possible distance following 
separation.
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Figure A1.8 Plasticity across ontogeny – temporary separation and time of measurement is at the end of ontogeny. 
The fitness rewards for correct specializations and fitness penalties for incorrect specializations are linear across 
all panels. The prior probability of E1 varies across columns and the cue reliability pattern varies across rows. Each 
panel represents T experimental ‘twin studies’, one for each t ϵ {1, T}. Outcomes of each twin study are marked 
by a grey diamond and a black circle. For each study we simulate 10,000 pairs of identical twins who follow the 
optimal policy and track their development across ontogeny. The environmental state is fixed to E1. For each pair 
of twins, one individual (the ‘focal’) receives a set of environmental cues across ontogeny simulated from the 
prior probability and cue reliability pattern. Its clone receives the same cues until the moment of separation in 
time period t after which it begins to receive reciprocal, opposite cues, which lasts temporarily (for 5 discrete time 
points) before twins continue development together until the end of ontogeny. The vertical axis within each panel 
depicts the phenotypic distance between focal individuals and their clones. The horizontal axis depicts the time 
period in which pairs of twins were separated. The phenotypic distance at the end of ontogeny between a focal 
individual and its clone corresponds to the Euclidean distance between their phenotypes. Grey lines and diamonds 
depict ‘absolute’ phenotypic distance, the average distance between the 10,000 focal individuals and their clones 
at the end of ontogeny (ranging from 0 to 20√2, scaled to a 0 to 1 range). Black lines and circles depict ‘proportional’ 
distance, the average absolute distance divided by the maximum possible distance following separation.
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Figure A1.9 Plasticity across ontogeny – temporary separation and time of measurement is at the end of the 
separation. The fitness rewards for correct specializations and fitness penalties for incorrect specializations are 
linear across all panels. The prior probability of E1 varies across columns and the cue reliability pattern varies across 
rows. Each panel represents T experimental ‘twin studies’, one for each t ϵ {1, T}. Outcomes of each twin study 
are marked by a grey diamond and a black circle. For each study we simulate 10,000 pairs of identical twins who 
follow the optimal policy and track their development across ontogeny. The environmental state is fixed to E1. For 
each pair of twins, one individual (the ‘focal’) receives a set of environmental cues across ontogeny simulated from 
the prior probability and cue reliability pattern. Its clone receives the same cues until the moment of separation 
in time period t after which it begins to receive reciprocal, opposite cues, which lasts temporarily (for 5 discrete 
time points) before twins continue development together until the end of ontogeny. The vertical axis within each 
panel depicts the phenotypic distance between focal individuals and their clones. The horizontal axis depicts the 
time period in which pairs of twins were separated. The phenotypic distance after the separation between a focal 
individual and its clone corresponds to the Euclidean distance between their phenotypes. Grey lines and diamonds 
depict ‘absolute’ phenotypic distance, the average distance between the 10,000 focal individuals and their clones 
after the separation (ranging from 0 to 20√2, scaled to a 0 to 1 range). Black lines and circles depict ‘proportional’ 
distance, the average absolute distance divided by the maximum possible distance during the separation.
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Appendix 2 – Chapter 4
Results for 15 time periods of ontogeny

Figure A2.1 Optimal policies. Optimal policies are shown for linear rewards and linear penalties, Tadult = 5, and 
symmetric (left panel) and asymmetric (right panel) transition probabilities. Within each panel, columns indicate 
different autocorrelation levels and rows indicate different cue reliabilities. Each combination of asymmetry, 
autocorrelation level, and cue reliability results in a unique Markov process. The vertical axis displays an organism’s 
posterior estimate of being in E1 and the horizontal axis displays time during ontogeny. At the onset of ontogeny 
all organisms start with a prior according to the stationary distribution (large grey circle). Throughout ontogeny 
organisms sample cues and update their posteriors, resulting in the coloured circles. Colours indicate the optimal, 
fitness-maximizing phenotypic decision in each state. Pies highlight cases in which organisms with the same 
estimates make different phenotypic decisions. Black corresponds to waiting, blue to specializing towards P1, red 
to specializing towards P0, green to ties between all three, and purple to ties between specializing towards the 
two phenotypic targets. The area of a circle (or pie piece) is proportional to the probability of reaching each state. 
Per time step these probabilities sum to 1. Beige lines between states depict possible developmental trajectories.
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Figure A2.2 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear 
rewards and linear penalties. Columns indicate whether transition probabilities are symmetric or asymmetric and 
in the latter case, whether organisms start development in the more (E0) or less likely (E1) environmental state. 
Rows indicate different cue reliabilities. Within each panel we show separate lines for different autocorrelation 
levels (indicated by the colour) and different adult lifespans (indicated by the type of line). Each combination of 
asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. The different starting 
environments and adult lifespans represent different possible start- and endpoints of each Markov process. For 
each combination of a unique Markov process, starting environment and adult lifespan, we conduct Tont = 10 
experimental twin studies, one for each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for each possible sequence 
of cues), who follow the optimal policy and get separated at time point t during ontogeny (horizontal axis). After 
separation one of the clones of each pair, receives reciprocal, opposite cues compared to its counterpart. We assign 
weights to each sequence of cues depending on how likely it is for the respective Markov process. We compute 
phenotypic distance (vertical axis) as the average, weighted Euclidean distance of all pairs of clones at the end of 
ontogeny and plot it against the time of adoption. Phenotypic distance is normalized by dividing it by the maximally 
attainable Euclidean distance. 
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Figure A2.3 Distributions of mature phenotypes. Distributions of mature phenotypes are shown for linear rewards 
and linear penalties. Columns indicate whether transition probabilities are symmetric or asymmetric and in the 
latter case, whether organisms start development in the more (E0) or less likely (E1) environmental state. When 
transition probabilities are symmetric, we only show distributions for E0, since results for E1 are mirrored across the 
vertical axis in the triangular plot. Rows (on the left side of the plot) indicate different autocorrelations. Transition 
probabilities and autocorrelations result in a 3 x 3 grid with nine panels. Within each panel, columns indicate 
different adult lifespans and rows (right side of the plot) indicate different cue reliability levels. Each combination 
of asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. The different starting 
environments and adult lifespans represent different possible start- and endpoints of each Markov process. For 
each combination of a unique Markov process, starting environment and adult lifespan, we simulate organisms 
following the optimal policy until maturation. Each light grey circle within a triangle identifies a unique phenotype 
at the end of ontogeny. A phenotype is specified by three numbers: the number of time steps waited (top vertex), 
the number of time steps specialized towards P0 (right vertex), and the number of time steps specialized towards 
P1 (left vertex). The closer a circle is towards one of the vertices, the higher the number of specializations towards 
that respective phenotype dimension. The area of a circle is proportional to the number of organisms developing 
a specific phenotype. Additionally, we show the average phenotype within each triangle (dark grey three-pronged 
star). The length of each prong pointing towards a vertex, represents the average number of specialization steps 
towards that vertex among all mature phenotypes.
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Figure A2.4 Fitness of the optimal policy and two fixed, non-plastic strategies. We compute fitness differences 
from baseline of specialized organisms. Fitness differences are shown for linear rewards and penalties. The left 
panel shows fitness differences for symmetric transition probabilities and the right panel for asymmetric ones. 
Within each panel columns indicate different adult lifespans and rows indicate different cue reliabilities. Each plot 
shows three different autocorrelation levels separated by dashed vertical lines. For each parameter combination, 
we compute fitness differences of three different strategies: The optimal policy (dark grey bars, indicated by “O”), 
a generalist strategy (black bars, indicated by “G”), and a specialist strategy (light grey bars, indicated by “S”). 
Generalists always specialize halfway towards P0 and halfway towards P1. Specialists fully specialize according to 
their prior (e.g., P0 if π(E0) > π(E1). If π(E1) = ν(E0) = 0.5, one half of the population will fully specialize towards P0 
and the other half towards P1. Total fitness corresponds to the average fit with the environment across adulthood. 
At each time period during adulthood fitness is the sum of rewards for correct specializations and penalties for 
incorrect ones.  
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Comparison 10 and 20 time periods of the adult lifespan

Figure A2.5 Optimal policies. Optimal policies are shown for linear rewards and linear penalties, Tadult = 10, and 
symmetric (left panel) and asymmetric (right panel) transition probabilities. Within each panel, columns indicate 
different autocorrelation levels and rows indicate different cue reliabilities. Each combination of asymmetry, 
autocorrelation level, and cue reliability results in a unique Markov process. The vertical axis displays an organism’s 
posterior estimate of being in E1 and the horizontal axis displays time during ontogeny. At the onset of ontogeny 
all organisms start with a prior according to the stationary distribution (large grey circle). Throughout ontogeny 
organisms sample cues and update their posteriors, resulting in the coloured circles. Colours indicate the optimal, 
fitness-maximizing phenotypic decision in each state. Pies highlight cases in which organisms with the same 
estimates make different phenotypic decisions. Black corresponds to waiting, blue to specializing towards P1, red 
to specializing towards P0, green to ties between all three, and purple to ties between specializing towards the 
two phenotypic targets. The area of a circle (or pie piece) is proportional to the probability of reaching each state. 
Per time step these probabilities sum to 1. Beige lines between states depict possible developmental trajectories.
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Figure A2.6 Optimal policies. Optimal policies are shown for linear rewards and linear penalties, Tadult = 20, and 
symmetric (left panel) and asymmetric (right panel) transition probabilities. Within each panel, columns indicate 
different autocorrelation levels and rows indicate different cue reliabilities. Each combination of asymmetry, 
autocorrelation level, and cue reliability results in a unique Markov process. The vertical axis displays an organism’s 
posterior estimate of being in E1 and the horizontal axis displays time during ontogeny. At the onset of ontogeny 
all organisms start with a prior according to the stationary distribution (large grey circle). Throughout ontogeny 
organisms sample cues and update their posteriors, resulting in the coloured circles. Colours indicate the optimal, 
fitness-maximizing phenotypic decision in each state. Pies highlight cases in which organisms with the same 
estimates make different phenotypic decisions. Black corresponds to waiting, blue to specializing towards P1, red 
to specializing towards P0, green to ties between all three, and purple to ties between specializing towards the 
two phenotypic targets. The area of a circle (or pie piece) is proportional to the probability of reaching each state. 
Per time step these probabilities sum to 1. Beige lines between states depict possible developmental trajectories.
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Figure A2.7 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear 
rewards and linear penalties. Columns indicate whether transition probabilities are symmetric or asymmetric and 
in the latter case, whether organisms start development in the more (E0) or less likely (E1) environmental state. 
Rows indicate different cue reliabilities. Within each panel we show separate lines for different autocorrelation 
levels (indicated by the colour) and different adult lifespans (indicated by the type of line). Each combination of 
asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. The different starting 
environments and adult lifespans represent different possible start- and endpoints of each Markov process. For 
each combination of a unique Markov process, starting environment and adult lifespan, we conduct Tont = 10 
experimental twin studies, one for each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for each possible sequence 
of cues), who follow the optimal policy and get separated at time point t during ontogeny (horizontal axis). After 
separation one of the clones of each pair, receives reciprocal, opposite cues compared to its counterpart. We assign 
weights to each sequence of cues depending on how likely it is for the respective Markov process. We compute 
phenotypic distance (vertical axis) as the average, weighted Euclidean distance of all pairs of clones at the end of 
ontogeny and plot it against the time of adoption. Phenotypic distance is normalized by dividing it by the maximally 
attainable Euclidean distance. 
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Figure A2.8 Distributions of mature phenotypes. Distributions of mature phenotypes are shown for linear rewards 
and linear penalties. Columns indicate whether transition probabilities are symmetric or asymmetric and in the 
latter case, whether organisms start development in the more (E0) or less likely (E1) environmental state. When 
transition probabilities are symmetric, we only show distributions for E0, since results for E1 are mirrored across the 
vertical axis in the triangular plot. Rows (on the left side of the plot) indicate different autocorrelations. Transition 
probabilities and autocorrelations result in a 3 x 3 grid with nine panels. Within each panel, columns indicate 
different adult lifespans and rows (right side of the plot) indicate different cue reliability levels. Each combination 
of asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. The different starting 
environments and adult lifespans represent different possible start- and endpoints of each Markov process. For 
each combination of a unique Markov process, starting environment and adult lifespan, we simulate organisms 
following the optimal policy until maturation. Each light grey circle within a triangle identifies a unique phenotype 
at the end of ontogeny. A phenotype is specified by three numbers: the number of time steps waited (top vertex), 
the number of time steps specialized towards P0 (right vertex), and the number of time steps specialized towards 
P1 (left vertex). The closer a circle is towards one of the vertices, the higher the number of specializations towards 
that respective phenotype dimension. The area of a circle is proportional to the number of organisms developing 
a specific phenotype. Additionally, we show the average phenotype within each triangle (dark grey three-pronged 
star). The length of each prong pointing towards a vertex, represents the average number of specialization steps 
towards that vertex among all mature phenotypes.
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Figure A2.9 Fitness of the optimal policy and two fixed, non-plastic strategies. We compute fitness differences 
from baseline of specialized organisms. Fitness differences are shown for linear rewards and penalties. The left 
panel shows fitness differences for symmetric transition probabilities and the right panel for asymmetric ones. 
Within each panel columns indicate different adult lifespans and rows indicate different cue reliabilities. Each plot 
shows three different autocorrelation levels separated by dashed vertical lines. For each parameter combination, 
we compute fitness differences of three different strategies: The optimal policy (dark grey bars, indicated by “O”), 
a generalist strategy (black bars, indicated by “G”), and a specialist strategy (light grey bars, indicated by “S”). 
Generalists always specialize halfway towards P0 and halfway towards P1. Specialists fully specialize according to 
their prior (e.g., P0 if π(E0) > π(E1). If π(E1) = ν(E0) = 0.5, one half of the population will fully specialize towards P0 
and the other half towards P1. Total fitness corresponds to the average fit with the environment across adulthood. 
At each time period during adulthood fitness is the sum of rewards for correct specializations and penalties for 
incorrect ones.  
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Dynamic programming

a. Variables and  explanati on

 Environmental variable Explanati on
E0 Environment 0
E1 Environment 1
P0 Opti mal phenotype for E0

P1 Opti mal phenotype for E1

C0 Cue indicati ng E0

C1 Cue indicati ng E1

Dt Dt  = {x1 , x2, ... xt ,}, denotes the sequence of cues unti l ti me period t  where x1 , x2, etc. 
unti l xt denote the kind of cue (C0 or C1) sampled in each ti me period

t Current ti me period ranges from t = 0 (birth) unti l 
Tend (the end of the reproducti ve cycle). It holds that Tend = Tont + Tadult.

Tont Durati on of ontogeny, i.e. ontogeny lasts for 10 ti me periods
Tadult Durati on of adulthood, i.e. adulthood lasts for 1, 5 or 10 ti me periods

In each ti me period (from 1 unti l Tend) the state of the environment may change 
according to the transiti on probabiliti es P(E0|E1) and P(E1|E0). Organisms fi rst sample a cue 
and then make a phenotypic decision, i.e. increasing y0, y1 or yw by 1 increment. Dt  = {x1 , 
x2, ... xt ,} denotes the sequence of cues that an organism has sampled by ti me period t. The 
state of an organism is characterized by a 5-tuple (Dt , y0, y1, yw , t).

Variable Explanati on
y0 Number of specializati on steps towards P0

y1 Number of specializati on steps towards P1

yw Number of ti me steps spent waiti ng
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b. Hidden Markov Model and forward algorithm 

We model ontogeny as a Hidden Markov Model in which the state of the environment 
is hidden or unobserved and cues correspond to the observed states. In this example the 
observed cue C0 could have either been the outcome of the hidden state E0 or E1.

b) Hidden Markov Model and forward algorithm 

We model ontogeny as a Hidden Markov Model in which the state of the environment is hidden or 
unobserved and cues correspond to the observed states. In this example the observed cue 𝐶𝐶𝐶𝐶0 could 
have either been the outcome of the hidden state 𝐸𝐸𝐸𝐸0 or 𝐸𝐸𝐸𝐸1.

Organisms use Bayesian inference to update their initial prior estimate of the environmental state 
based on the sampled cues. The forward algorithm can be used to compute the posterior probability of 
each state given the history of sampled cues in a hidden Markov model. 

Parameters for 
Bayesian inference

Explanation

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) Prior probability of 𝐸𝐸𝐸𝐸0
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) Prior probability of 𝐸𝐸𝐸𝐸1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) Transition probability from 𝐸𝐸𝐸𝐸1 to 𝐸𝐸𝐸𝐸0
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0) Transition probability from 𝐸𝐸𝐸𝐸0 to 𝐸𝐸𝐸𝐸1
𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) Cue reliability; conditional probability of receiving 𝐶𝐶𝐶𝐶0 in 𝐸𝐸𝐸𝐸0
𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1) Cue reliability; conditional probability of receiving 𝐶𝐶𝐶𝐶1 in 𝐸𝐸𝐸𝐸1
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) Posterior probability of 𝐸𝐸𝐸𝐸0 after having sampled 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) Posterior probability of 𝐸𝐸𝐸𝐸1 after having sampled 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡

  

According to the laws of probability it holds that:

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸0) = 1

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1) + 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸1) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0) = 1

Organisms use Bayesian inference to update their initi al prior esti mate of the 
environmental state based on the sampled cues. The forward algorithm can be used to 
compute the posterior probability of each state given the history of sampled cues in a 
hidden Markov model. 

Parameters for Bayesian 
inference

Explanati on

P(E0) Prior probability of E0

P(E1) Prior probability of E1

P(E0|E1) Transiti on probability from E1 to E0

P(E1|E0) Transiti on probability from E0 to E1

P(C0|E0) Cue reliability; conditi onal probability of receiving C0 in E0

P(C1|E1) Cue reliability; conditi onal probability of receiving C1 in E1

P(E0|Dt) Posterior probability of E0 aft er having sampled Dt

P(E1|Dt) Posterior probability of E1 aft er having sampled Dt
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According to the laws of probability it holds that:

184

𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸0 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸0 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) Posterior probability of 𝐸𝐸𝐸𝐸1 after having sampled 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡

  

According to the laws of probability it holds that:

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸0) = 1

𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1) + 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸1) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0) = 1

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) = 1 

Further, we assume that 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) =  𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1). 

 

The forward algorithm allows us to compute the joint probabilities 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) for any 
sequence 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡. 

For each possible sequence 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,} of cues 𝐶𝐶𝐶𝐶0 and 𝐶𝐶𝐶𝐶1, we apply the forward 
algorithm as defined by the following recursions running from 1 until the current time period t during 
ontogeny: 

   

𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡�  =  𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�  •  � 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡1� •  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1�  
𝑖𝑖𝑖𝑖 ∈ {0,1}

 

𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡�  =  𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�  •  � 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡1� •  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1�  
𝑖𝑖𝑖𝑖 ∈ {0,1}

 

 

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡� and 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡� are specified by the cue reliabilities 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) and 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1), depending on 
whether the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 cue in the sequence corresponded to 𝐶𝐶𝐶𝐶0 or 𝐶𝐶𝐶𝐶1. 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1� are 
specified by the transition probabilities between states, where 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1 can correspond to either 𝐸𝐸𝐸𝐸0 or 𝐸𝐸𝐸𝐸1. 
The outcome for the recursion will be the joint probabilities of any of the two environmental states and 
the specific sequence of cues, i.e., 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡).  

 

Lastly, we compute the posterior probabilities  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) according to: 

 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  =  
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)
 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  =  
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)
 

 

 

Further, we assume that P(C0|E0) = P(C1|E1).

The forward algorithm allows us to compute the joint probabiliti es P(E0|Dt) and 
P(E1|Dt) for any sequence Dt.

For each possib  le sequence Dt  = {x1 , x2, ... xt ,} of cues C0 and C1, we apply the forward 
algorithm as defi ned by the following recursions running from 1 unti l the current ti me 
period t during ontogeny:

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) = 1 

Further, we assume that 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) =  𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1). 

 

The forward algorithm allows us to compute the joint probabilities 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) for any 
sequence 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡. 

For each possible sequence 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,} of cues 𝐶𝐶𝐶𝐶0 and 𝐶𝐶𝐶𝐶1, we apply the forward 
algorithm as defined by the following recursions running from 1 until the current time period t during 
ontogeny: 

   

𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡�  =  𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�  •  � 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡1� •  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1�  
𝑖𝑖𝑖𝑖 ∈ {0,1}

 

𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡�  =  𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�  •  � 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡1� •  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1�  
𝑖𝑖𝑖𝑖 ∈ {0,1}

 

 

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡� and 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡� are specified by the cue reliabilities 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) and 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1), depending on 
whether the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 cue in the sequence corresponded to 𝐶𝐶𝐶𝐶0 or 𝐶𝐶𝐶𝐶1. 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1� are 
specified by the transition probabilities between states, where 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1 can correspond to either 𝐸𝐸𝐸𝐸0 or 𝐸𝐸𝐸𝐸1. 
The outcome for the recursion will be the joint probabilities of any of the two environmental states and 
the specific sequence of cues, i.e., 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡).  

 

Lastly, we compute the posterior probabilities  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) according to: 

 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  =  
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)
 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  =  
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)
 

 

 

 

P(xt|E0,t) and P(xt|E1,t) are specifi ed by the cue reliabiliti es P(C0|E0) and P(C1|E1), 
depending on whether the tth cue in the sequence corresponded to C0 or C1. P(E0,t|Ei,t-1) 
and P(E1,t|Ei,t-1) are specifi ed by the transiti on probabiliti es between states, where Ei,t-1 can 
correspond to either E0 or E1. The outcome for the recursion will be the joint probabiliti es 
of any of the two environmental states and the specifi c sequence of cues, i.e., P(E0|Dt) and 
P(E0|Dt). 

Lastly, we compute the posterior probabiliti es P(E0|Dt) and P(E1|Dt) according to:

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) = 1 

Further, we assume that 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) =  𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1). 

 

The forward algorithm allows us to compute the joint probabilities 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) for any 
sequence 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡. 

For each possible sequence 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,} of cues 𝐶𝐶𝐶𝐶0 and 𝐶𝐶𝐶𝐶1, we apply the forward 
algorithm as defined by the following recursions running from 1 until the current time period t during 
ontogeny: 

   

𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡�  =  𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�  •  � 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡1� •  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1�  
𝑖𝑖𝑖𝑖 ∈ {0,1}

 

𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡�  =  𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�  •  � 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡1� •  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1�  
𝑖𝑖𝑖𝑖 ∈ {0,1}

 

 

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡� and 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡� are specified by the cue reliabilities 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶0|𝐸𝐸𝐸𝐸0) and 𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶1|𝐸𝐸𝐸𝐸1), depending on 
whether the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 cue in the sequence corresponded to 𝐶𝐶𝐶𝐶0 or 𝐶𝐶𝐶𝐶1. 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡|𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1� are 
specified by the transition probabilities between states, where 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡1 can correspond to either 𝐸𝐸𝐸𝐸0 or 𝐸𝐸𝐸𝐸1. 
The outcome for the recursion will be the joint probabilities of any of the two environmental states and 
the specific sequence of cues, i.e., 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡).  

 

Lastly, we compute the posterior probabilities  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) and 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡) according to: 

 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  =  
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)
 

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  =  
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)

𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)  +  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡)
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c. Fitness functi ons

We denote the mature phenotype at the end of ontogeny by Ymat = (y0, y1, Tont).

 Functi ons and constants Explanati on
ϕ(Ymat,t) Expected, fi tness reward at ti me period t during adulthood (t > Tont)
ψ(Ymat,t) Expected, fi tness penalty at ti me period t during adulthood (t > Tont)
π(Ymat,t) Expected fi tness at ti me period t during adulthood (t > Tont)
πTotal(Ymat) Expected fi tness across adulthood
π0 Baseline fi tness
f(y) Mapping between phenotypic increments and fi tness rewards (or penalti es) 
μ Penalty weight

Fitness consequences of phenotypic decisions are not accrued throughout ontogeny 
but only during adulthood. At each ti me period during adulthood the fi tness diff erence 
from baseline corresponds to the total rewards for correct specializati ons minus penalti es 
from incorrect specializati ons, where each correct increment results in a marginal gain and 
each incorrect increment results in a marginal penalty. We studied three mappings between 
correct (or incorrect) phenotypic development and fi tness rewards (or penalti es).

Suppose a mature organism is in the following state at the end of ontogeny (DTont, y0, 
y1, yw ,Tont) having sampled the sequence of cues DTont and developed the mature phenotype 
Ymat = {y0, y1, Tont}. Its posterior esti mates P(E0,Tont|DTont) and P(E1,Tont|DTont) at the end of 
ontogeny refl ect the probabiliti es of being in either environmental state at the onset of 
adulthood. Using these two probabiliti es as the starti ng distributi on and the transiti on 
matrix P we are able to compute the probabiliti es P(E0,Tont|DTont) and P(E1,Tont|DTont) for each 
ti me period t in adulthood:

c) Fitness functions 
 
We denote the mature phenotype at the end of ontogeny by 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = (𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡). 
 

Functions and 
constants 

Explanation 

𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) Expected, fitness reward at time period t during adulthood (t > 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) Expected, fitness penalty at time period t during adulthood (t > 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) Expected fitness at time period t during adulthood (t > 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) Expected fitness across adulthood 

𝜋𝜋𝜋𝜋0 Baseline fitness 
𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Mapping between phenotypic increments and fitness rewards (or 

penalties)  
µ Penalty weight 

 
 
Fitness consequences of phenotypic decisions are not accrued throughout ontogeny but only 
during adulthood. At each time period during adulthood the fitness difference from baseline 
corresponds to the total rewards for correct specializations minus penalties from incorrect 
specializations, where each correct increment results in a marginal gain and each incorrect 
increment results in a marginal penalty. We studied three mappings between correct (or incorrect) 
phenotypic development and fitness rewards (or penalties).  
  
Suppose a mature organism is in the following state at the end of ontogeny (𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
having sampled the sequence of cues 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and developed the mature phenotype 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = {𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡}.  Its posterior estimates 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� at the end of ontogeny reflect 
the probabilities of being in either environmental state at the onset of adulthood. Using these two 
probabilities as the starting distribution and the transition matrix P we are able to compute the 
probabilities 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� for each time period 𝑡𝑡𝑡𝑡 in adulthood: 
 
�𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�,𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡 �𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜��  = �𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�,𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�� • 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸−𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 

𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑃𝑃 = �𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0)
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1)�. 

 
 
To compute rewards and penalties at each adult time period, we need to compute the expectation 
across both environmental states, weighted by how likely each state is as indicated by the 
posterior estimates. We denote the mapping from phenotypic increments to rewards and penalties 
by 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦), where 𝑦𝑦𝑦𝑦 can refer to both 𝑦𝑦𝑦𝑦0 and 𝑦𝑦𝑦𝑦1, and derive the following expressions for expected 
rewards and penalties at each adult time period:  
 
 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 

𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

 

At any time period in adulthood expected fitness  𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) corresponds to the sum of expected 
rewards and penalties, in addition to the baseline fitness: 
 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 +  𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) + µ •  𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡). 

To compute rewards and penalti es at each adult ti me period, we need to compute 
the expectati on across both environmental states, weighted by how likely each state is as 
indicated by the posterior esti mates. We denote the mapping from phenotypic increments 
to rewards and penalti es by f(y), where y can refer to both y0 and y1, and derive the following 
expressions for expected rewards and penalti es at each adult ti me period: 

c) Fitness functions 
 
We denote the mature phenotype at the end of ontogeny by 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = (𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡). 
 

Functions and 
constants 

Explanation 

𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) Expected, fitness reward at time period t during adulthood (t > 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) Expected, fitness penalty at time period t during adulthood (t > 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) Expected fitness at time period t during adulthood (t > 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) Expected fitness across adulthood 

𝜋𝜋𝜋𝜋0 Baseline fitness 
𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Mapping between phenotypic increments and fitness rewards (or 

penalties)  
µ Penalty weight 

 
 
Fitness consequences of phenotypic decisions are not accrued throughout ontogeny but only 
during adulthood. At each time period during adulthood the fitness difference from baseline 
corresponds to the total rewards for correct specializations minus penalties from incorrect 
specializations, where each correct increment results in a marginal gain and each incorrect 
increment results in a marginal penalty. We studied three mappings between correct (or incorrect) 
phenotypic development and fitness rewards (or penalties).  
  
Suppose a mature organism is in the following state at the end of ontogeny (𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) 
having sampled the sequence of cues 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and developed the mature phenotype 𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡 = {𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡}.  Its posterior estimates 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� at the end of ontogeny reflect 
the probabilities of being in either environmental state at the onset of adulthood. Using these two 
probabilities as the starting distribution and the transition matrix P we are able to compute the 
probabilities 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� and 𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� for each time period 𝑡𝑡𝑡𝑡 in adulthood: 
 
�𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�,𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡 �𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜��  = �𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�,𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�� • 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸−𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 

𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑃𝑃 = �𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0)
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1)�. 

 
 
To compute rewards and penalties at each adult time period, we need to compute the expectation 
across both environmental states, weighted by how likely each state is as indicated by the 
posterior estimates. We denote the mapping from phenotypic increments to rewards and penalties 
by 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦), where 𝑦𝑦𝑦𝑦 can refer to both 𝑦𝑦𝑦𝑦0 and 𝑦𝑦𝑦𝑦1, and derive the following expressions for expected 
rewards and penalties at each adult time period:  
 
 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 

𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

 

At any time period in adulthood expected fitness  𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) corresponds to the sum of expected 
rewards and penalties, in addition to the baseline fitness: 
 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 +  𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) + µ •  𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡). 
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At any time period in adulthood expected fitness π(Ymat,t) corresponds to the sum of 
expected rewards and penalties, in addition to the baseline fitness:

186 
 

rewards and penalties at each adult time period:  
 
 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 

𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

 

At any time period in adulthood expected fitness  𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) corresponds to the sum of expected 
rewards and penalties, in addition to the baseline fitness: 
 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 +  𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) + µ •  𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡). 

 
Total fitness across adulthood then corresponds to the average fitness across adulthood:  
𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  1

 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜
•  ∑ 𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡 . 

 

.

Total fitness across adulthood then corresponds to the average fitness across 
adulthood: 

186 
 

posterior estimates. We denote the mapping from phenotypic increments to rewards and penalties 
by 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦), where 𝑦𝑦𝑦𝑦 can refer to both 𝑦𝑦𝑦𝑦0 and 𝑦𝑦𝑦𝑦1, and derive the following expressions for expected 
rewards and penalties at each adult time period:  
 
 𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) 

𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) = −�𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸0,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦1) +  𝑃𝑃𝑃𝑃�𝐸𝐸𝐸𝐸1,𝑡𝑡𝑡𝑡�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� • 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦0)� 

 

At any time period in adulthood expected fitness  𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) corresponds to the sum of expected 
rewards and penalties, in addition to the baseline fitness: 
 
𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) =  𝜋𝜋𝜋𝜋0 +  𝜙𝜙𝜙𝜙(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡) + µ •  𝜓𝜓𝜓𝜓(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡). 

 
Total fitness across adulthood then corresponds to the average fitness across adulthood:  
𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡) =  1

 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜
•  ∑ 𝜋𝜋𝜋𝜋(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡 . 

 
.

Lastly, we present the three functional mappings between the realized phenotype 
and fitness rewards and penalties:

Returns on fitness - f(y) Formula Parameter settings to ensure that maximal 
rewards and penalties correspond to Tont  

linear f(y) = y -

diminishing f(y) = α(1 - e-βy)

Lastly, we present the three functional mappings between the realized phenotype and fitness 
rewards and penalties: 
 

Returns on fitness - 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Formula Parameter settings to ensure that 
maximal rewards and penalties 

correspond to 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡  
 

linear 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝑦𝑦𝑦𝑦 - 
diminishing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡
1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)  

increasing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦 − 1) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡

𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) − 1 

   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

increasing f(y) = α(eβy - 1)

Lastly, we present the three functional mappings between the realized phenotype and fitness 
rewards and penalties: 
 

Returns on fitness - 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) Formula Parameter settings to ensure that 
maximal rewards and penalties 

correspond to 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡  
 

linear 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝑦𝑦𝑦𝑦 - 
diminishing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡
1 − 𝑒𝑒𝑒𝑒−𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)  

increasing 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦) = 𝛼𝛼𝛼𝛼(𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦 − 1) 𝛽𝛽𝛽𝛽 = 0.2,𝛼𝛼𝛼𝛼 =
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡

𝑒𝑒𝑒𝑒𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) − 1 

   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



Appendix 2   |   185   

d. Optimal decisions 

In each time period, a developing organism can choose one of three options: 
increment one step on P0, one step on P1 or wait and forgo specialization. It chooses the 
option with the highest expected fitness across adulthood. In the event of a tie between 
two or all of the options the organism chooses amongst the current alternatives with equal 
probability. 

F(Dt , y0, y1, yw , t, Tont) denotes the maximum expected fitness that can be attained 
across adulthood as a result of decisions made between t and Tont, when the organism’s 
current state after the last cue sampled is (DTont, y0, y1, yw ,Tont) and the organisms chooses 
option a, so that:

d) Optimal decisions  
 
In each time period, a developing organism can choose one of three options: increment one step 
on 𝑃𝑃𝑃𝑃0, one step on 𝑃𝑃𝑃𝑃1or wait and forgo specialization. It chooses the option with the highest 
expected fitness across adulthood. In the event of a tie between two or all of the options the 
organism chooses amongst the current alternatives with equal probability.  
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) denotes the maximum expected fitness that can be attained across 
adulthood as a result of decisions made between 𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡, when the organism’s current state 
after the last cue sampled is (𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) and the organisms chooses option 𝑎𝑎𝑎𝑎, so that: 
 
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) = max

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎{0,1,𝑤𝑤𝑤𝑤}
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚 , where 

 
𝐹𝐹𝐹𝐹0 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0 + 1,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡), 
𝐹𝐹𝐹𝐹1 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1 + 1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡), 
𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 + 1, 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡). 
 
We apply backwards induction to solve the dynamic programming equation 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) for all 𝑡𝑡𝑡𝑡. We start with 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡: 
 
𝐹𝐹𝐹𝐹�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡� =  𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡). 
 
After calculating expected fitness at the end of ontogeny we continue by decrementing 𝑡𝑡𝑡𝑡. For each 
𝑡𝑡𝑡𝑡 < 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 we compute the 𝑎𝑎𝑎𝑎, which maximizes 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) in time period 𝑡𝑡𝑡𝑡.       
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

We apply backwards induction to solve the dynamic programming equation F(Dt , y0, 
y1, yw , t, Tont) for all t. We start with t = Tont:

d) Optimal decisions  
 
In each time period, a developing organism can choose one of three options: increment one step 
on 𝑃𝑃𝑃𝑃0, one step on 𝑃𝑃𝑃𝑃1or wait and forgo specialization. It chooses the option with the highest 
expected fitness across adulthood. In the event of a tie between two or all of the options the 
organism chooses amongst the current alternatives with equal probability.  
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) denotes the maximum expected fitness that can be attained across 
adulthood as a result of decisions made between 𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡, when the organism’s current state 
after the last cue sampled is (𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) and the organisms chooses option 𝑎𝑎𝑎𝑎, so that: 
 
 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) = max

𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎{0,1,𝑤𝑤𝑤𝑤}
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚 , where 

 
𝐹𝐹𝐹𝐹0 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0 + 1,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡), 
𝐹𝐹𝐹𝐹1 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1 + 1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡), 
𝐹𝐹𝐹𝐹𝑤𝑤𝑤𝑤 =  𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 + 1, 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡). 
 
We apply backwards induction to solve the dynamic programming equation 
𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) for all 𝑡𝑡𝑡𝑡. We start with 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡: 
 
𝐹𝐹𝐹𝐹�𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 ,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡� =  𝜋𝜋𝜋𝜋𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜(𝑌𝑌𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡). 
 
After calculating expected fitness at the end of ontogeny we continue by decrementing 𝑡𝑡𝑡𝑡. For each 
𝑡𝑡𝑡𝑡 < 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 we compute the 𝑎𝑎𝑎𝑎, which maximizes 𝐹𝐹𝐹𝐹(𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡+1,𝑦𝑦𝑦𝑦0,𝑦𝑦𝑦𝑦1,𝑦𝑦𝑦𝑦𝑤𝑤𝑤𝑤 , 𝑡𝑡𝑡𝑡 + 1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡) in time period 𝑡𝑡𝑡𝑡.       
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

After calculating expected fitness at the end of ontogeny we continue by decrementing 
t. For each t < Tont we compute the a, which maximizes F(Dt + 1 , y0, y1, yw , t + 1, Tont) in time 
period t.
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From transition probabilities to autocorrelations

For any transition probabilities the autocorrelation can be computed from the 
transition matrix 

From transition probabilities to autocorrelations 

�𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0)
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1)�, using the following formula: 

 

 𝑒𝑒𝑒𝑒 =  1 −  (𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1)) 
 

stationary distributions.  

 

FIGURE A2.10 GOES HERE 

Figure A2.10 
autocorrelations and the right panel shows the stationary probability of being in 𝐸𝐸𝐸𝐸1. Within each panel the x-
probability 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1) of remaining in 𝐸𝐸𝐸𝐸1 and the y-axis displays the probability 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) of remaining in 𝐸𝐸𝐸𝐸0. 

few discrete values are displayed on each axis for readability.    

 

Comparison of different asymmetries 

 

FIGURE A2.11 GOES HERE 
 

Figure A2.11 
linear penalties. Columns indicate the asymmetry level 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1)  −  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0)
transition probabilities. Pairs of clones started in the more likely environment, 𝐸𝐸𝐸𝐸0. 
Within each panel we show 
lifespans (indicated by the type of line). 
unique Markov process. The 

lifespan, we conduct 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 10 experimental twin studies, one for each 𝑡𝑡𝑡𝑡 ∈ {1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡}. We simulate 210 

(horizontal axis). After separation one of the clones of each 

compute phenotypic distance (vertical axis) as the average, weighted Eucli
ontogeny and plot it against the time of adoption. Phenotypic distance is normalized by 
attainable Euclidean distance.   

 

FIGURE A2.12 GOES HERE 
 

Figure A2.12 
linear penalties. Columns indicate the asymmetry level 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1)  −  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0)
transition probabilities. Pairs of clones started in the less likely environment, 𝐸𝐸𝐸𝐸1. 

lifespans (indicated by the typ

lifespan, we conduct 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 10 experimental twin studies, one for each 𝑡𝑡𝑡𝑡 ∈ {1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡}. We simulate 210 

, using the following formula:

From transition probabilities to autocorrelations 

For any transition probabilities the autocorrelation can be computed from the transition matrix 𝑃𝑃𝑃𝑃 =

�𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0)
𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1) 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1)�, using the following formula: 

 

 𝑒𝑒𝑒𝑒 =  1 −  (𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0) + 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1)) (1) 
 

The following figure displays how transition probabilities translate to autocorrelation values and 
stationary distributions.  

 

FIGURE A2.10 GOES HERE 

Figure A2.10 From transition probabilities to autocorrelations and stationary distributions. The left panel shows 
autocorrelations and the right panel shows the stationary probability of being in 𝐸𝐸𝐸𝐸1. Within each panel the x-axis displays the 
probability 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸1) of remaining in 𝐸𝐸𝐸𝐸1 and the y-axis displays the probability 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸0) of remaining in 𝐸𝐸𝐸𝐸0. 
Autocorrelations and stationary probabilities have been computed for a continuous range of transition probabilities. Only a 
few discrete values are displayed on each axis for readability.    

 

Comparison of different asymmetries 

 

FIGURE A2.11 GOES HERE 
 

Figure A2.11 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear rewards and 
linear penalties. Columns indicate the asymmetry level 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1)  −  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0). An asymmetry of 0 implies symmetric 
transition probabilities. Pairs of clones started in the more likely environment, 𝐸𝐸𝐸𝐸0. Rows indicate different cue reliabilities. 
Within each panel we show separate lines for different autocorrelation levels (indicated by the colour) and different adult 
lifespans (indicated by the type of line). Each combination of asymmetry, autocorrelation level, and cue reliability results in a 
unique Markov process. The different starting environments and adult lifespans represent different possible start- and 
endpoints of each Markov process. For each combination of a unique Markov process, starting environment and adult 
lifespan, we conduct 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 10 experimental twin studies, one for each 𝑡𝑡𝑡𝑡 ∈ {1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡}. We simulate 210 pairs of clones (one 
for each possible sequence of cues), who follow the optimal policy and get separated at time point t during ontogeny 
(horizontal axis). After separation one of the clones of each pair, receives reciprocal, opposite cues compared to its 
counterpart. We assign weights to each sequence of cues depending on how likely it is for the respective Markov process. We 
compute phenotypic distance (vertical axis) as the average, weighted Euclidean distance of all pairs of clones at the end of 
ontogeny and plot it against the time of adoption. Phenotypic distance is normalized by dividing it by the maximally 
attainable Euclidean distance.   

 

FIGURE A2.12 GOES HERE 
 

Figure A2.12 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear rewards and 
linear penalties. Columns indicate the asymmetry level 𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸0|𝐸𝐸𝐸𝐸1)  −  𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸1|𝐸𝐸𝐸𝐸0). An asymmetry of 0 implies symmetric 
transition probabilities. Pairs of clones started in the less likely environment, 𝐸𝐸𝐸𝐸1. Rows indicate different cue reliabilities. 
Within each panel we show separate lines for different autocorrelation levels (indicated by the colour) and different adult 
lifespans (indicated by the type of line). Each combination of asymmetry, autocorrelation level, and cue reliability results in a 
unique Markov process. The different starting environments and adult lifespans represent different possible start- and 
endpoints of each Markov process. For each combination of a unique Markov process, starting environment and adult 
lifespan, we conduct 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 10 experimental twin studies, one for each 𝑡𝑡𝑡𝑡 ∈ {1,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡}. We simulate 210 pairs of clones (one 
for each possible sequence of cues), who follow the optimal policy and get separated at time point t during ontogeny 
(horizontal axis). After separation one of the clones of each pair, receives reciprocal, opposite cues compared to its 

(1)

The following figure displays how transition probabilities translate to autocorrelation 
values and stationary distributions. 
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Figure A2.10 From transition probabilities to autocorrelations and stationary distributions. The left panel shows 
autocorrelations and the right panel shows the stationary probability of being in E1. Within each panel the x-axis 
displays the probability P(E1|E1) of remaining in E1 and the y-axis displays the probability P(E0|E0) of remaining 
in E0. Autocorrelations and stationary probabilities have been computed for a continuous range of transition 
probabilities. Only a few discrete values are displayed on each axis for readability.  
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Comparison of different asymmetries

Figure A2.11 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear 
rewards and linear penalties. Columns indicate the asymmetry level P(E0|E1) - P(E1|E0). An asymmetry of 0 
implies symmetric transition probabilities. Pairs of clones started in the more likely environment, E0. Rows indicate 
different cue reliabilities. Within each panel we show separate lines for different autocorrelation levels (indicated 
by the colour) and different adult lifespans (indicated by the type of line). Each combination of asymmetry, 
autocorrelation level, and cue reliability results in a unique Markov process. The different starting environments 
and adult lifespans represent different possible start- and endpoints of each Markov process. For each combination 
of a unique Markov process, starting environment and adult lifespan, we conduct Tont = 10 experimental twin 
studies, one for each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for each possible sequence of cues), who 
follow the optimal policy and get separated at time point t during ontogeny (horizontal axis). After separation one 
of the clones of each pair, receives reciprocal, opposite cues compared to its counterpart. We assign weights to 
each sequence of cues depending on how likely it is for the respective Markov process. We compute phenotypic 
distance (vertical axis) as the average, weighted Euclidean distance of all pairs of clones at the end of ontogeny and 
plot it against the time of adoption. Phenotypic distance is normalized by dividing it by the maximally attainable 
Euclidean distance. 
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Figure A2.12 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear 
rewards and linear penalties. Columns indicate the asymmetry level P(E0|E1) - P(E1|E0). An asymmetry of 0 implies 
symmetric transition probabilities. Pairs of clones started in the less likely environment, E1. Rows indicate different 
cue reliabilities. Within each panel we show separate lines for different autocorrelation levels (indicated by the 
colour) and different adult lifespans (indicated by the type of line). Each combination of asymmetry, autocorrelation 
level, and cue reliability results in a unique Markov process. The different starting environments and adult lifespans 
represent different possible start- and endpoints of each Markov process. For each combination of a unique 
Markov process, starting environment and adult lifespan, we conduct Tont = 10 experimental twin studies, one for 
each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for each possible sequence of cues), who follow the optimal 
policy and get separated at time point t during ontogeny (horizontal axis). After separation one of the clones of 
each pair, receives reciprocal, opposite cues compared to its counterpart. We assign weights to each sequence of 
cues depending on how likely it is for the respective Markov process. We compute phenotypic distance (vertical 
axis) as the average, weighted Euclidean distance of all pairs of clones at the end of ontogeny and plot it against the 
time of adoption. Phenotypic distance is normalized by dividing it by the maximally attainable Euclidean distance. 
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Adoption study paradigm and distributions of posterior estimates during 
ontogeny and adulthood

Figure A2.13 Adoption study paradigm. Clones develop together until adoption, experiencing the same sequence 
of cues and making the same phenotypic decisions, resulting in identical phenotypes. At this point, the clones are 
separated, with one (the focal, denoted by ‘O’) remaining in the original patch and the other (the copy, denoted by 
‘C’) developing in a mirror patch. The sequence of environmental states in the mirror patch is the same as in the 
original patch. However, the cues in the mirror patch are opposite those in the original patch. Whenever the focal 
individual samples a cue to one state (e.g. ‘+’), the copy samples a cue to the other state (e.g. ‘-’), and vice versa. 
Focal-and-copy pairs continue development until maturation. At the end of ontogeny, we compute the average 
difference between the pairs of simulated twins. The larger the difference between mature phenotypes, the higher 
the levels of plasticity at the onset of adoption. Copyright: this figure has been adapted from Frankenhuis and 
Walasek (2020) and we have used the images of Daphnia with permission from Dr. Weiss (2019).
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Figure A2.14 Distributions of posterior estimates during ontogeny and adulthood. Distributions are shown for 
symmetric (left panel) and asymmetric (right panel) transition probabilities. Within each panel, columns indicate 
different levels of autocorrelation and rows indicate different cue reliabilities. Each combination of asymmetry, 
autocorrelation level, and cue reliability results in a unique Markov process. The vertical axis displays posterior 
estimates of being in E1 and the horizontal axis displays time during ontogeny and adulthood. The solid, black 
horizontal line indicates the stationary, long-term probability of being in E1, π(E1), for each Markov process. The 
vertical solid, black line marks the final time period in ontogeny. Finally, the dashed, black vertical lines mark 
possible end points of adulthood. Each filled grey circle indicates a possible posterior estimate throughout an 
organism’s lifespan. The area of a circle is proportional to the probability of reaching that estimate. Grey lines 
between posteriors depict developmental trajectories.
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Additional results for 10 time periods
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Results for different penalty weights
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Figure A2.19 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear 
rewards and linear penalties, and a penalty weight of 0.5. Columns indicate whether transition probabilities are 
symmetric or asymmetric and in the latter case, whether organisms start development in the more (E0) or less likely 
(E1) environmental state. Rows indicate different cue reliabilities. Within each panel, we show separate lines for 
different levels of autocorrelation (indicated by the colour) and different adult lifespans (indicated by the type of 
line). Each combination of asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. 
The different starting environments and adult lifespans represent different possible start- and endpoints of each 
Markov process. For each combination of a unique Markov process, starting environment and adult lifespan, we 
conduct Tont = 10 experimental twin studies, one for each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for 
each possible sequence of cues), who follow the optimal policy and get separated at time point t during ontogeny 
(horizontal axis). After separation one of the clones of each pair, receives reciprocal, opposite cues compared 
to its focal individual. We assign weights to each sequence of cues depending on its likelihood of occurring. We 
compute phenotypic distance (vertical axis) as the average, weighted Euclidean distance of all pairs of clones at the 
end of ontogeny and plot it against the time of separation. Phenotypic distance is normalized by dividing it by the 
maximally attainable Euclidean distance. 
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Figure A2.22 Phenotypic plasticity across ontogeny. Phenotypic plasticity across ontogeny is shown for linear 
rewards and linear penalties, and a penalty weight of 2. Columns indicate whether transition probabilities are 
symmetric or asymmetric and in the latter case, whether organisms start development in the more (E0) or less likely 
(E1) environmental state. Rows indicate different cue reliabilities. Within each panel, we show separate lines for 
different levels of autocorrelation (indicated by the colour) and different adult lifespans (indicated by the type of 
line). Each combination of asymmetry, autocorrelation level, and cue reliability results in a unique Markov process. 
The different starting environments and adult lifespans represent different possible start- and endpoints of each 
Markov process. For each combination of a unique Markov process, starting environment and adult lifespan, we 
conduct Tont = 10 experimental twin studies, one for each t ϵ {1, Tont}. We simulate 210 pairs of clones (one for 
each possible sequence of cues), who follow the optimal policy and get separated at time point t during ontogeny 
(horizontal axis). After separation one of the clones of each pair, receives reciprocal, opposite cues compared 
to its focal individual. We assign weights to each sequence of cues depending on its likelihood of occurring. We 
compute phenotypic distance (vertical axis) as the average, weighted Euclidean distance of all pairs of clones at the 
end of ontogeny and plot it against the time of separation. Phenotypic distance is normalized by dividing it by the 
maximally attainable Euclidean distance.
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Appendix 3 – Chapter 5
Crimes related to assault (NYC crime data January 2006 – December 2020)

PD description n Explanation
Assault 2,1, Peace Officer 17,301 First- and second-degree assault of a police officer or other public 

safety first responders who are performing their official duties. 
First degree assault can seriously harm or fatally injure a person. 
Second- and third-degree assault are less threatening forms of 
assault. 

Assault 2,1, Unclassified 172,380 Unclassified assault is any assault that does not fit with predefined 
categories. 

Assault 3 418,094 Third-degree assault. 
Assault Police/Peace Officer 2,183 Assault of unspecified degree. 
Rape 1 7,659 First-degree rape involves forcible compulsion and may occur 

with the use or threatened use of a deadly weapon, kidnapping, 
infliction of serious bodily injury to the alleged victim, or burglary. 
It is a class A felony, which allows for up to life imprisonment.

Rape 2 1,823 Second-degree rape occurs in cases that involve forcible 
compulsion but do not rise to the level of a first-degree offense. It 
may also occur when an alleged victim is mentally incapacitated 
or physically helpless, or when the defendant is in a position 
of authority over the alleged victim, such as in a healthcare or 
eldercare facility. It is also a class A felony.

Rape 3 3,000 If an alleged offense does not meet the definition of first- or 
second- degree rape, but still involves “clearly-expressed” lack 
of consent or threat of harm to the alleged victim’s property, the 
state may charge it as third-degree rape.

Sexual Abuse 556 The infliction of sexual contact upon a person by forcible 
compulsion.

Sexual Abuse 1 4,303 First-degree sexual abuse
Sexual Abuse 3,2 16,395 Second- and third-degree sexual abuse.
Vehicular Assault (intox. 
driver)

990 Vehicular assault is defined as causing substantial bodily harm 
to another person while 1) driving a car under the influence of 
alcohol or any drug, or 2) driving a car in a reckless manner; or 3) 
driving a car with disregard for the safety of others.

Table A3.1 Internal police department descriptions of offenses included under ‘assault’, their frequency of 
occurrence between January 2006 and December 2020, and explanations. 

Boroughs of NYC – population density

Borough n
The Bronx 2.504.700
Brooklyn 1.385.108
Manhatten 1.585.873
Queens 2.230.722
Staten Island 468.730

Table A3.2 Population densities across NYC boroughs. Assaults occurring in a 5km radius around our regions of 
interest (i.e. Morrisania, Brownsville, Ozone Park, Upper East Side, and Tottenville) fall into different boroughs. We 
corrected the assault rates for each assault based on the population density of the borough they belong to. 
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Regions of interest – different resolution

Figure A3.1 Regions of interest in the New York Crime data. Rows indicate different temporal resolutions, namely 
daily, weekly, monthly, biannually, and annually (from top to bottom) and columns show regions of interest. Each 
individual panel plots assault rates (summed according to their temporal resolution) against time between January 
2006 and December 2020. 

Properties of time series data 

Time series decomposition
Any time series can be decomposed into three individual parts: trend, season, and 

random component. The trend describes how the level of a time series changes with time. 
Season refers to the presence of reoccurring patterns within a calendar year. Identifying the 
presence of seasonal patterns requires us to be able to partition the data into natural time 
units such as days, weeks, or months. The random component is what is left of the data after 
subtracting the trend and seasonal patterns. It is the irregular, non-systematic variation in 
the time series. Together, these components describe how the time series behaves across 
the observation period. If the goal is not to explain a specific non-random component (e.g. 
the trend), it is usually advised to remove trend and season before analysing the time series. 
In these cases, a time series is usually made stationary prior to further analysis.
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A time series can be decomposed with an additive or multiplicative model. The 
additive model assumes that the raw time series is the sum of its trend, season, and 
random component. The multiplicative model represents the series as the product of these 
components. The additive model is suited for time series with constant seasonal variation 
over time, whereas the multiplicative model is suited for series with increasing seasonal 
variation. Visually, an additive time series can be identified by its constant frequency and 
amplitude of seasonal peaks. In a multiplicative model these components vary across time, 
typically increasing or decreasing.   

Changepoints
Across time, the mean level and variance of a time series can suddenly change. 

A high number of changepoints in mean and variance can make the time series less 
predictable. Changepoints in an individual’s time series may indicate life events, such as 
job changes or moves. Changepoints which are common to a whole sample may indicate 
exogenous events, such as switches in political leadership or a financial crisis. We used the 
packages changepoint and changepoint.np (Haynes et al., 2016; Killick & Eckley, 2014) to 
estimate changepoints in mean and variance individually and simultaneously. The package 
offers a large variety of methods to estimate the number and position of changepoints. 
Our framework includes the modified Bayes information criterion (MBIC) and the Akaike 
information criterion (AIC) as penalties for selecting between models with different numbers 
of changepoints (Zhang & Siegmund, 2007). Typically, the MBIC penalizes models with a 
large number of parameters more strongly, resulting in more parsimonious models with 
fewer changepoints. Other functionality and penalties from the changepoint package can 
be easily added to our framework. 

Stationarity
A time series whose statistical properties change across time is called non-stationary 

(Jebb et al., 2015; Young et al., 2020). Observing an increasing trend or changes in variance 
in the data is therefore a strong indicator of non-stationarity. In this way, the presence of 
stationarity in itself tells us something about a series’ behaviour over time. Many time 
series models assume that a time series is stationary or can be transformed into a stationary 
series. Removing systematic variation, such as changes in mean and variance, will often 
be sufficient to make a time series stationary. A series can be ‘detrended’ by computing 
the difference between values in subsequent time periods; this stabilizes the mean. In 
rare cases, more than one round of differencing is necessary to achieve a constant mean. 
Taking the logarithm of the time series usually helps to achieve constant variance across 
time. However, it is advisable to inspect the time series after differencing and to only apply 
additional measures if necessary (Jebb et al., 2015). The augmented Dickey-Fuller test 
is often used to assess whether a time series is stationary, where a significant outcome 
indicates stationarity. 

Autocorrelation
Another property of time series is the autocorrelation. Autocorrelation indicates 

whether the time series is correlated with itself at different lags. A high autocorrelation 
implies that the current values of a series predict the subsequent values. This is called a 
lag-1 autocorrelation. Autocorrelation can be also computed for different lags, allowing us 
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to assess whether current values predict values that are two, three, or four time units away, 
resulting in lag-2, lag-3 and lag-4 autocorrelations. The higher the autocorrelation, the easier 
it is to predict future values of a time series based on current values. One problem with the 
autocorrelation at higher order lags is that the relationship between current values and 
values at later time periods partially depends on the correlation between current values and 
intermediate values. To account for this dependency, it is common to additionally compute 
the partial autocorrelation which removes the influence of intermediate lags.  

Autocorrelation and partial autocorrelation can be computed for the raw time series, 
but also for transformed series such as the stationary time series. Autocorrelation of the 
stationary time series indicates how predictable the time series is after the systematic 
changes in statistical properties, such as mean and variance, have been removed. 

Framework user manual
The framework is divided into three phases: Exploration, Preprocessing, and 

Extracting statistics.

Exploration 
Our framework can be applied to the raw data directly or to a preprocessed 

version. To aid the user in making preprocessing choices and in selecting environmental 
statistics from our framework, we offer the opportunity to first visually explore the data. 
We offer plots of the raw time series for randomly chosen participants, the decomposed 
time series, the distribution of augmented Dickey-Fuller test values, the autocorrelation 
and partial autocorrelation at different lags of the raw and stationary time series, and 
changepoints in mean and variance (Figure A3.2). For plots related to stationarity, the user 
can explore different values for the degree of differencing and enable or disable logarithmic 
transformation of the data. 

Preprocessing 
During the preprocessing stage the user can remove the trend and/or seasonal 

components from the time series and apply differencing and/or logarithmic transformations 
to make the time series stationary. Additionally, we offer the opportunity to split the data at 
different time periods, resulting in multiple, smaller datasets. This may be useful if the user 
is interested in separately exploring environmental statistics before and after a specific age 
or specific time period. After preprocessing it is possible to extract environmental statistics 
from the resulting data (or datasets) during the next stage of the framework. 
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Figure A3.2 Exploratory plots created by our framework. From top to bottom and left to right: our framework plots 
the raw data for individual participants, the time series decomposition of individual participants, the distribution of 
augmented dickey-fuller values indicating stationarity, the distribution of changepoints in mean, variance, or both 
using different computational methods, the distribution of autocorrelation and partial autocorrelation values in the 
sample of the raw time series and stationary time series.

Extracting statistics
This stage is the heart of our framework. Here, we extract the statistics listed in Table 

5.1 (Chapter 5) from the preprocessed dataset. In order to estimate a slope in the data 
the user can specify a model that is fitted to each participant’s time series. In the simplest 
case this is just a linear model with time as the predictor and the environmental variable 
as the outcome. The user could also apply more complicated models, such as a nonlinear, 
polynomial model. As a default the framework also extracts some statistics applied to a 
participant’s stationary time series, as well as the squared deviation from the mean. The 
latter set of statistics can help to identify systematic changes in variance. In addition to 
the numeric output, our framework also offers various options for visualizing the extracted 
statistics.  
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Analysis
This step is not part of our framework but likely the goal of most users. Once statistics 

have been extracted and selected, the user may use them for subsequent analysis. If the 
user attempts to compute inferential statistics for the entire sample using the extracted 
statistics as predictors, they should ensure a minimum sample size that is appropriate for 
the fitted model. 
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Nederlanse samenvatting

Gevoelige perioden zijn perioden (of levensfasen) waarin de ontwikkeling van een 
organisme meer wordt beïnvloed door ervaringen dan in andere perioden (of fasen). 
Gevoelige perioden zijn het gevolg van ontwikkelingsplasticiteit, d.w.z. het vermogen van een 
genotype om afhankelijk van de ervaring verschillende fenotypes te produceren. Ondanks 
enorme vooruitgang in het begrijpen van de fysiologische mechanismen van gevoelige 
perioden, weten we weinig over hun evolutie. Wiskundige modellen worden in toenemende 
mate gebruikt om te onderzoeken onder welke omgevingscondities gevoelige perioden 
worden begunstigd door natuurlijke selectie. Deze modellen vinden dat gevoelige perioden 
de neiging hebben om vroeg in het leven te evolueren en dat plasticiteit doorgaans afneemt 
over de ontogenie heen (d.w.z. de levensfase die relevant is voor de ontwikkeling van een 
eigenschap), en vaak nul bereikt (Hoofdstukken 1 en 2). We weten echter dat gevoelige 
perioden ook in latere levensfasen kunnen bestaan, zoals puberteit of adolescentie,   en dat 
de resterende plasticiteit laat in de ontwikkeling kan blijven.

Bestaande modellen van gevoelige periode-evolutie bieden weinig inzicht in 
omstandigheden die verbeterde plasticiteit in latere ontwikkelingsstadia bevorderen. 
Onderzoekers hebben echter gespeculeerd dat natuurlijke selectie de voorkeur zou kunnen 
hebben aan gevoelige perioden later in de ontwikkeling, wanneer organismen variatie 
ervaren in twee hoofdfactoren: de mate waarin ervaringen (‘cues’) onzekerheid over de 
omgeving kunnen verminderen (‘cue-betrouwbaarheid’), en de omgevingstoestand zelf. 
De modellen die in dit proefschrift worden gepresenteerd formaliseren deze ideeën. Het 
eerste model onderzoekt de evolutie van gevoelige perioden wanneer organismen variatie 
ervaren in de betrouwbaarheid van signalen; het tweede model onderzoekt variatie 
in de omgevingstoestand over ontogenie. Mijn eerste model laat zien dat, wanneer de 
betrouwbaarheid van cues over de ontogenie heen toeneemt, gevoelige perioden kunnen 
evolueren in latere ontwikkelingsstadia (Hoofdstuk 3). Wanneer de cue-betrouwbaarheid 
afneemt over de ontogenie, evolueren gevoelige perioden enkel aan het begin van de 
ontwikkeling. Over het algemeen lijkt natuurlijke selectie aangepaste niveaus van plasticiteit 
te hebben om de betrouwbaarheid van cues te volgen. Mijn tweede model laat zien dat, 
wanneer de cue-betrouwbaarheid constant is over de ontogenie, maar de omgevingstoestand 
fluctueert, er gevoelige perioden kunnen optreden aan het begin, halverwege en zelfs tegen 
het einde van de ontogenie (Hoofdstuk 4). Deze bevinding contrasteert bevindingen van 
eerdere modellen van gevoelige periode-evolutie waarin plasticiteit vaak nul bereikt en 
nooit toeneemt tegen het einde van ontogenie. Ongeacht wanneer plasticiteit tijdens de 
ontogenie piekt, behouden organismen altijd een resterende plasticiteit laat in de ontogenie 
wanneer de omgeving fluctueert. Mijn resultaten suggereren dat het onwaarschijnlijk is dat 
kritieke perioden, waarna de plasticiteit nul wordt, de voorkeur hebben in fluctuerende 
omgevingen.

Om synergiën tussen modellen en empirische gegevens mogelijk te maken, heb 
ik ook een raamwerk ontwikkeld voor het bestuderen van omgevingsstatistieken over 
ontwikkeling heen. Omgevingsstatistieken drukken noties van stabiliteit en verandering van 
het omgeving uit in ondubbelzinnige en formele termen, d.w.z. als statistische definities. 
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Beschouw mijn tweede model dat ervan uitgaat dat de omgeving fluctueert tijdens het 
leven van een organisme. In plaats van alle mogelijke snelheden van omgevingsfluctuaties 
te onderzoeken, zou het kennen van de waarden van omgevingsstatistieken me kunnen 
helpen om me te concentreren op snelheden die relevant zijn voor een specifieke soort of 
eigenschap. Op deze manier zouden mijn resultaten relevanter zijn voor onderzoekers die 
deze soorten of eigenschappen bestuderen. 

Hoewel kennis van de waarden van omgevingsstatistieken nuttig is, is het ook 
van belang de statistische definities van omgevingsconstructies te weten. Stabiliteit en 
verandering van de omgeving staan   beide centraal in de ontwikkelingswetenschap. Het 
meeste ontwikkelingsonderzoek veronderstelt, claimt of onderzoekt enkele noties van 
stabiliteit en verandering in het omgeving. De huidige norm is om noties van stabiliteit 
en verandering van het omgeving (bijv. variabiliteit, onvoorspelbaarheid, instabiliteit) te 
beschrijven met behulp van natuurlijke taal, die vaak ambigu is. Deze ambiguïteit verzwakt 
de match tussen theorie en methoden binnen studies, en leidt tot inconsistenties tussen 
studies. Ik heb een raamwerk gepresenteerd dat noties van stabiliteit en verandering van het 
omgeving in ondubbelzinnige en formele termen organiseert (Hoofdstuk 5). Het raamwerk 
is gebaseerd op statistische definities van stabiliteit en verandering in het omgeving die 
al op grote schaal worden gebruikt in andere disciplines, zoals biologie en ecologie. Om 
de haalbaarheid aan te tonen, pas ik het raamwerk als een casestudie toe op een dataset 
van misdaadcijfers in New York City over 15 jaar, met de nadruk op ‘onvoorspelbaarheid’. 
Sommige resultaten generaliseren over statistische definities, en andere zijn afhankelijk 
van welke statistische definities worden gebruikt. Dit is van belang voor onderzoek in 
de psychologie dat zich richt op individuele uitkomsten: verschillende definities kunnen 
leiden tot verschillende conclusies over de impact van onvoorspelbaarheid op belangrijke 
levensuitkomsten zoals gezondheid, welzijn en psychopathologie. Ten slotte heb ik 
besproken hoe mijn werk bijdraagt   aan de integratie van wetenschappelijke disciplines, en 
heb ik toekomstige ideeën gepresenteerd voor het modelleren van de evolutie van gevoelige 
perioden en het uitbreiden van mijn raamwerk van omgevingsstatistieken (Hoofdstuk 6). 
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English summary

Sensitive periods are times (or life stages) in which an organism’s development is 
more affected by experiences than at other times (or stages). Sensitive periods result from 
developmental plasticity, i.e., the capacity of a genotype to produce different phenotypes 
depending on experience. Despite immense progress in understanding the physiological 
mechanisms of sensitive periods, we know little about their evolution. Mathematical models 
are increasingly used to study under which environmental conditions sensitive periods are 
favoured by natural selection. These models find that sensitive periods tend to evolve early 
in life and that plasticity typically declines across ontogeny (i.e., the life stage relevant for 
the development of a trait), often reaching zero (Chapters 1 and 2). However, we know that 
sensitive periods can also exist at later life stages, such as puberty or adolescence, and that 
residual plasticity can remain late in development. 

Existing models of sensitive period evolution offer little insight into conditions 
favouring enhanced plasticity at later developmental stages. However, researchers have 
speculated that natural selection might favour sensitive periods later during development 
when organisms experience variation in two main factors: the extent to which experiences 
(‘cues’) can reduce uncertainty about the environment (‘cue reliability’), and the 
environmental state itself. The models presented in this dissertation formalize these ideas. 
The first model explores the evolution of sensitive periods when organisms experience 
variation in the reliability of cues; the second model explores variation in the environmental 
state across ontogeny. My first model shows that, when the reliability of cues increases 
across ontogeny, sensitive periods can evolve at later developmental stages (Chapter 3). 
When cue reliability decreases across ontogeny, sensitive periods only evolve at the onset 
of development. Overall, natural selection appears to have adapted levels of plasticity to 
track the reliability of cues. My second model shows that, when cue reliability is constant 
across ontogeny but the environmental state fluctuates, sensitive periods can occur at the 
onset, midway through, and even towards the end of ontogeny (Chapter 4). This finding 
contrasts findings from previous models of sensitive period evolution in which plasticity 
often reaches zero, and never increases towards the end of ontogeny. Regardless of when 
during ontogeny plasticity peaks, organisms always retain residual plasticity late in ontogeny 
when the environment fluctuates. My results suggest that critical periods, after which 
plasticity reaches zero, are unlikely to be favored in fluctuating environments. 

To facilitate synergies between models and empirical data, I have also developed 
a framework for studying environmental statistics across development. Environmental 
statistics express notions of environmental stability and change in unambiguous and formal 
terms, i.e., as statistical definitions. Consider my second model which assumes that the 
environment fluctuates within an organism’s lifetime. Rather than exploring all possible 
rates of environmental fluctuations, knowing the values of environmental statistics could 
help me focus on rates that are relevant for a specific species or trait. In this way, my results 
would be more relevant to researchers studying these species or traits. 
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While knowledge of the values of environmental statistics is useful, so is knowing 
the statistical definitions of environmental constructs. Environmental stability and change 
are both central to developmental science. Most developmental research assumes, claims, 
or examines some notions of environmental stability and change. The current norm is to 
describe notions of environmental stability and change (e.g., variability, unpredictability, 
instability) using natural language, which tends to be ambiguous. This ambiguity weakens 
the match between theory and methods within studies, and leads to inconsistencies across 
studies. I have presented a framework that organizes notions of environmental stability and 
change in unambiguous and formal terms (Chapter 5). The framework draws on statistical 
definitions of environmental stability and change that are already widely used in other 
disciplines, such as biology and ecology. To demonstrate feasibility, I apply the framework 
to a dataset of crime rates in New York City across 15 years, focusing on ‘unpredictability’ 
as a case study. Some results generalize across statistical definitions, and others depend on 
which statistical definitions are used. This matters for research in psychology focusing on 
individual outcomes: different definitions can lead to different conclusions about the impact 
of unpredictability on key life outcomes such as health, wellbeing, and psychopathology. 
Finally, I have discussed how my work contributes towards the integration of scientific 
disciplines, and presented future ideas for modeling the evolution of sensitive periods and 
expanding my framework of environmental statistics (Chapter 6). 
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